English Русский 中文 Español Deutsch 日本語 한국어 Français Italiano Türkçe
preview
Encapsulando modelos ONNX em classes

Encapsulando modelos ONNX em classes

MetaTrader 5Exemplos | 3 agosto 2023, 09:42
414 0
MetaQuotes
MetaQuotes

Introdução

No artigo anterior, utilizamos dois modelos ONNX para elaborar um classificador de votação. Nesse processo, todo o código-fonte foi preparado em um único arquivo MQ5. Sim, todo o código foi dividido em funções, mas tente, por exemplo, trocar a ordem dos modelos. Bem, e se adicionarmos mais um modelo? O código-fonte ficará ainda mais extenso. Vamos tentar uma abordagem orientada a objetos.


1. Quais modelos vamos utilizar

No classificador de votação anterior, utilizamos um modelo de classificação e um modelo de regressão. No modelo de regressão, em vez de obtermos um movimento de preço previsto (para baixo, para cima, sem mudanças), obtemos um preço previsto com base no qual calculamos a classe. No entanto, nesse caso, não temos uma distribuição de probabilidades das classes, o que impede a realização do chamado "voto suave".

Preparamos 3 modelos de classificação. Dois desses modelos já foram utilizados no artigo "Exemplo de como montar modelos ONNX em MQL5". O primeiro modelo, que era de regressão, foi convertido em um modelo de classificação. O treinamento foi realizado em séries de 10 preços OHLC. O segundo modelo é de classificação e foi treinado em séries de 63 preços de fechamento.

Por fim, temos mais um modelo. O modelo de classificação foi treinado em séries de 30 preços de fechamento e séries de médias móveis simples com períodos de média de 21 e 34. Não fizemos suposições sobre o cruzamento das médias móveis com o gráfico de fechamento, e todas as regularidades serão calculadas e memorizadas pela rede na forma de matrizes de coeficientes entre as camadas.

Todos os modelos foram treinados nos dados do servidor MetaQuotes-Demo, no par de moedas EURUSD, período D1, de 01/01/2010 a 01/01/2023. Os scripts de treinamento de todos os três modelos foram escritos em Python e estão anexados a este artigo. Não os incluiremos aqui para não distrair o leitor do tópico principal do nosso artigo.


2. Necessidade de uma classe base para todos os modelos

Temos três modelos. Cada um difere do outro no tamanho dos dados de entrada e no pré-processamento desses dados. Todos os modelos têm algo em comum: a mesma interface. As classes de todos os modelos devem herdar de uma mesma classe base.

Vamos tentar apresentar a classe base.

//+------------------------------------------------------------------+
//|                                            ModelSymbolPeriod.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+

//--- price movement prediction
#define PRICE_UP   0
#define PRICE_SAME 1
#define PRICE_DOWN 2

//+------------------------------------------------------------------+
//| Base class for models based on trained symbol and period         |
//+------------------------------------------------------------------+
class CModelSymbolPeriod
  {
protected:
   long              m_handle;           // created model session handle
   string            m_symbol;           // symbol of trained data
   ENUM_TIMEFRAMES   m_period;           // timeframe of trained data
   datetime          m_next_bar;         // time of next bar (we work at bar begin only)
   double            m_class_delta;      // delta to recognize "price the same" in regression models

public:
   //+------------------------------------------------------------------+
   //| Constructor                                                      |
   //+------------------------------------------------------------------+
   CModelSymbolPeriod(const string symbol,const ENUM_TIMEFRAMES period,const double class_delta=0.0001)
     {
      m_handle=INVALID_HANDLE;
      m_symbol=symbol;
      m_period=period;
      m_next_bar=0;
      m_class_delta=class_delta;
     }

   //+------------------------------------------------------------------+
   //| Destructor                                                       |
   //+------------------------------------------------------------------+
   ~CModelSymbolPeriod(void)
     {
      Shutdown();
     }

   //+------------------------------------------------------------------+
   //| virtual stub for Init                                            |
   //+------------------------------------------------------------------+
   virtual bool Init(const string symbol,const ENUM_TIMEFRAMES period)
     {
      return(false);
     }

   //+------------------------------------------------------------------+
   //| Check for initialization, create model                           |
   //+------------------------------------------------------------------+
   bool CheckInit(const string symbol,const ENUM_TIMEFRAMES period,const uchar& model[])
     {
      //--- check symbol, period
      if(symbol!=m_symbol || period!=m_period)
        {
         PrintFormat("Model must work with %s,%s",m_symbol,EnumToString(m_period));
         return(false);
        }

      //--- create a model from static buffer
      m_handle=OnnxCreateFromBuffer(model,ONNX_DEFAULT);
      if(m_handle==INVALID_HANDLE)
        {
         Print("OnnxCreateFromBuffer error ",GetLastError());
         return(false);
        }

      //--- ok
      return(true);
     }

   //+------------------------------------------------------------------+
   //| Release ONNX session                                             |
   //+------------------------------------------------------------------+
   void Shutdown(void)
     {
      if(m_handle!=INVALID_HANDLE)
        {
         OnnxRelease(m_handle);
         m_handle=INVALID_HANDLE;
        }
     }

   //+------------------------------------------------------------------+
   //| Check for continue OnTick                                        |
   //+------------------------------------------------------------------+
   virtual bool CheckOnTick(void)
     {
      //--- check new bar
      if(TimeCurrent()<m_next_bar)
         return(false);
      //--- set next bar time
      m_next_bar=TimeCurrent();
      m_next_bar-=m_next_bar%PeriodSeconds(m_period);
      m_next_bar+=PeriodSeconds(m_period);

      //--- work on new day bar
      return(true);
     }

   //+------------------------------------------------------------------+
   //| virtual stub for PredictPrice (regression model)                 |
   //+------------------------------------------------------------------+
   virtual double PredictPrice(void)
     {
      return(DBL_MAX);
     }

   //+------------------------------------------------------------------+
   //| Predict class (regression -> classification)                     |
   //+------------------------------------------------------------------+
   virtual int PredictClass(void)
     {
      double predicted_price=PredictPrice();
      if(predicted_price==DBL_MAX)
         return(-1);

      int    predicted_class=-1;
      double last_close=iClose(m_symbol,m_period,1);
      //--- classify predicted price movement
      double delta=last_close-predicted_price;
      if(fabs(delta)<=m_class_delta)
         predicted_class=PRICE_SAME;
      else
        {
         if(delta<0)
            predicted_class=PRICE_UP;
         else
            predicted_class=PRICE_DOWN;
        }

      //--- return predicted class
      return(predicted_class);
     }
  };
//+------------------------------------------------------------------+

Essa classe base pode ser usada tanto para modelos de regressão quanto para modelos de classificação. Apenas será necessário implementar o método adequado no classe filha - PredictPrice ou PredictClass.

Na classe base, é definido o símbolo e período com os quais o modelo deve trabalhar (com base nos dados em que foi treinado). Na classe base, é feita uma verificação para garantir que o expert que utiliza o modelo está trabalhando no símbolo e período corretos, e também é criada uma sessão ONNX para executar o modelo. A classe base garante que o expert funcione apenas no início de uma nova barra.


3. Classe para o primeiro modelo

Nosso primeiro modelo é chamado model.eurusd.D1.10.class.onnx, ou seja, é um modelo de classificação, treinado no EURUSD D1 com séries de 10 preços OHLC.

//+------------------------------------------------------------------+
//|                                        ModelEurusdD1_10Class.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#include "ModelSymbolPeriod.mqh"

#resource "Python/model.eurusd.D1.10.class.onnx" as uchar model_eurusd_D1_10_class[]

//+------------------------------------------------------------------+
//| ONNX-model wrapper class                                         |
//+------------------------------------------------------------------+
class CModelEurusdD1_10Class : public CModelSymbolPeriod
  {
private:
   int               m_sample_size;

public:
   //+------------------------------------------------------------------+
   //| Constructor                                                      |
   //+------------------------------------------------------------------+
   CModelEurusdD1_10Class(void) : CModelSymbolPeriod("EURUSD",PERIOD_D1)
     {
      m_sample_size=10;
     }

   //+------------------------------------------------------------------+
   //| ONNX-model initialization                                        |
   //+------------------------------------------------------------------+
   virtual bool Init(const string symbol, const ENUM_TIMEFRAMES period)
     {
      //--- check symbol, period, create model
      if(!CModelSymbolPeriod::CheckInit(symbol,period,model_eurusd_D1_10_class))
        {
         Print("model_eurusd_D1_10_class : initialization error");
         return(false);
        }

      //--- since not all sizes defined in the input tensor we must set them explicitly
      //--- first index - batch size, second index - series size, third index - number of series (OHLC)
      const long input_shape[] = {1,m_sample_size,4};
      if(!OnnxSetInputShape(m_handle,0,input_shape))
        {
         Print("model_eurusd_D1_10_class : OnnxSetInputShape error ",GetLastError());
         return(false);
        }
   
      //--- since not all sizes defined in the output tensor we must set them explicitly
      //--- first index - batch size, must match the batch size of the input tensor
      //--- second index - number of classes (up, same or down)
      const long output_shape[] = {1,3};
      if(!OnnxSetOutputShape(m_handle,0,output_shape))
        {
         Print("model_eurusd_D1_10_class : OnnxSetOutputShape error ",GetLastError());
         return(false);
        }
      //--- ok
      return(true);
     }

   //+------------------------------------------------------------------+
   //| Predict class                                                    |
   //+------------------------------------------------------------------+
   virtual int PredictClass(void)
     {
      static matrixf input_data(m_sample_size,4);    // matrix for prepared input data
      static vectorf output_data(3);                 // vector to get result
      static matrix  mm(m_sample_size,4);            // matrix of horizontal vectors Mean
      static matrix  ms(m_sample_size,4);            // matrix of horizontal vectors Std
      static matrix  x_norm(m_sample_size,4);        // matrix for prices normalize
   
      //--- prepare input data
      matrix rates;
      //--- request last bars
      if(!rates.CopyRates(m_symbol,m_period,COPY_RATES_OHLC,1,m_sample_size))
         return(-1);
      //--- get series Mean
      vector m=rates.Mean(1);
      //--- get series Std
      vector s=rates.Std(1);
      //--- prepare matrices for prices normalization
      for(int i=0; i<m_sample_size; i++)
        {
         mm.Row(m,i);
         ms.Row(s,i);
        }
      //--- the input of the model must be a set of vertical OHLC vectors
      x_norm=rates.Transpose();
      //--- normalize prices
      x_norm-=mm;
      x_norm/=ms;
   
      //--- run the inference
      input_data.Assign(x_norm);
      if(!OnnxRun(m_handle,ONNX_NO_CONVERSION,input_data,output_data))
         return(-1);
      //--- evaluate prediction
      return(int(output_data.ArgMax()));
     }
  };
//+------------------------------------------------------------------+

Como mencionado anteriormente: "Temos três modelos. Cada um difere do outro no tamanho dos dados de entrada, no pré-processamento desses dados". E redefinimos apenas dois métodos - Init e PredictClass. Nos outros dois classes para os outros dois modelos, os mesmos métodos serão redefinidos.

No método Init, o método CheckInit da classe base é chamado, onde é criada uma sessão para o nosso modelo ONNX. Além disso, os tamanhos dos tensores de entrada e saída são explicitamente configurados. Aqui, há mais comentários do que código.

No método PredictClass, é fornecida a mesma preparação dos dados de entrada que no treinamento do modelo. Uma matriz de preços OHLC normalizados é fornecida como entrada.


4. Vamos verificar como isso funciona

Para testar a funcionalidade de nossa classe, foi criado um expert muito compacto.

//+------------------------------------------------------------------+
//|                                    ONNX.eurusd.D1.Prediction.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright   "Copyright 2023, MetaQuotes Ltd."
#property link        "https://www.mql5.com"
#property version     "1.00"

#include "ModelEurusdD1_10Class.mqh"
#include <Trade\Trade.mqh>

input double InpLots = 1.0;    // Lots amount to open position

CModelEurusdD1_10Class ExtModel;
CTrade                 ExtTrade;

//+------------------------------------------------------------------+
//| Expert initialization function                                   |
//+------------------------------------------------------------------+
int OnInit()
  {
   if(!ExtModel.Init(_Symbol,_Period))
      return(INIT_FAILED);
//---
   return(INIT_SUCCEEDED);
  }
//+------------------------------------------------------------------+
//| Expert deinitialization function                                 |
//+------------------------------------------------------------------+
void OnDeinit(const int reason)
  {
   ExtModel.Shutdown();
  }
//+------------------------------------------------------------------+
//| Expert tick function                                             |
//+------------------------------------------------------------------+
void OnTick()
  {
   if(!ExtModel.CheckOnTick())
      return;

//--- predict next price movement
   int predicted_class=ExtModel.PredictClass();
//--- check trading according to prediction
   if(predicted_class>=0)
      if(PositionSelect(_Symbol))
         CheckForClose(predicted_class);
      else
         CheckForOpen(predicted_class);
  }
//+------------------------------------------------------------------+
//| Check for open position conditions                               |
//+------------------------------------------------------------------+
void CheckForOpen(const int predicted_class)
  {
   ENUM_ORDER_TYPE signal=WRONG_VALUE;
//--- check signals

   if(predicted_class==PRICE_DOWN)
      signal=ORDER_TYPE_SELL;    // sell condition
   else
     {
      if(predicted_class==PRICE_UP)
         signal=ORDER_TYPE_BUY;  // buy condition
     }

//--- open position if possible according to signal
   if(signal!=WRONG_VALUE && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      double price=SymbolInfoDouble(_Symbol,(signal==ORDER_TYPE_SELL) ? SYMBOL_BID : SYMBOL_ASK);
      ExtTrade.PositionOpen(_Symbol,signal,InpLots,price,0,0);
     }
  }
//+------------------------------------------------------------------+
//| Check for close position conditions                              |
//+------------------------------------------------------------------+
void CheckForClose(const int predicted_class)
  {
   bool bsignal=false;
//--- position already selected before
   long type=PositionGetInteger(POSITION_TYPE);
//--- check signals
   if(type==POSITION_TYPE_BUY && predicted_class==PRICE_DOWN)
      bsignal=true;
   if(type==POSITION_TYPE_SELL && predicted_class==PRICE_UP)
      bsignal=true;

//--- close position if possible
   if(bsignal && TerminalInfoInteger(TERMINAL_TRADE_ALLOWED))
     {
      ExtTrade.PositionClose(_Symbol,3);
      //--- open opposite
      CheckForOpen(predicted_class);
     }
  }
//+------------------------------------------------------------------+

Como o modelo foi treinado com dados de preços até 2023, executaremos o teste a partir de 1º de janeiro de 2023.

Configurações de teste

E obteremos o seguinte resultado:

Resultados do teste

Como podemos ver, o modelo funciona perfeitamente.


5. Classe para o segundo modelo

O segundo modelo é chamado model.eurusd.D1.30.class.onnx. É um modelo de classificação, treinado no EURUSD D1 com séries de 30 preços de fechamento e duas médias móveis simples com períodos de 21 e 34.

//+------------------------------------------------------------------+
//|                                        ModelEurusdD1_30Class.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#include "ModelSymbolPeriod.mqh"

#resource "Python/model.eurusd.D1.30.class.onnx" as uchar model_eurusd_D1_30_class[]

//+------------------------------------------------------------------+
//| ONNX-model wrapper class                                         |
//+------------------------------------------------------------------+
class CModelEurusdD1_30Class : public CModelSymbolPeriod
  {
private:
   int               m_sample_size;
   int               m_fast_period;
   int               m_slow_period;
   int               m_sma_fast;
   int               m_sma_slow;

public:
   //+------------------------------------------------------------------+
   //| Constructor                                                      |
   //+------------------------------------------------------------------+
   CModelEurusdD1_30Class(void) : CModelSymbolPeriod("EURUSD",PERIOD_D1)
     {
      m_sample_size=30;
      m_fast_period=21;
      m_slow_period=34;
      m_sma_fast=INVALID_HANDLE;
      m_sma_slow=INVALID_HANDLE;
     }

   //+------------------------------------------------------------------+
   //| ONNX-model initialization                                        |
   //+------------------------------------------------------------------+
   virtual bool Init(const string symbol, const ENUM_TIMEFRAMES period)
     {
      //--- check symbol, period, create model
      if(!CModelSymbolPeriod::CheckInit(symbol,period,model_eurusd_D1_30_class))
        {
         Print("model_eurusd_D1_30_class : initialization error");
         return(false);
        }

      //--- since not all sizes defined in the input tensor we must set them explicitly
      //--- first index - batch size, second index - series size, third index - number of series (Close, MA fast, MA slow)
      const long input_shape[] = {1,m_sample_size,3};
      if(!OnnxSetInputShape(m_handle,0,input_shape))
        {
         Print("model_eurusd_D1_30_class : OnnxSetInputShape error ",GetLastError());
         return(false);
        }
   
      //--- since not all sizes defined in the output tensor we must set them explicitly
      //--- first index - batch size, must match the batch size of the input tensor
      //--- second index - number of classes (up, same or down)
      const long output_shape[] = {1,3};
      if(!OnnxSetOutputShape(m_handle,0,output_shape))
        {
         Print("model_eurusd_D1_30_class : OnnxSetOutputShape error ",GetLastError());
         return(false);
        }
      //--- indicators
      m_sma_fast=iMA(m_symbol,m_period,m_fast_period,0,MODE_SMA,PRICE_CLOSE);
      m_sma_slow=iMA(m_symbol,m_period,m_slow_period,0,MODE_SMA,PRICE_CLOSE);
      if(m_sma_fast==INVALID_HANDLE || m_sma_slow==INVALID_HANDLE)
        {
         Print("model_eurusd_D1_30_class : cannot create indicator");
         return(false);
        }
      //--- ok
      return(true);
     }

   //+------------------------------------------------------------------+
   //| Predict class                                                    |
   //+------------------------------------------------------------------+
   virtual int PredictClass(void)
     {
      static matrixf input_data(m_sample_size,3);    // matrix for prepared input data
      static vectorf output_data(3);                 // vector to get result
      static matrix  x_norm(m_sample_size,3);        // matrix for prices normalize
      static vector  vtemp(m_sample_size);
      static double  ma_buffer[];
   
      //--- request last bars
      if(!vtemp.CopyRates(m_symbol,m_period,COPY_RATES_CLOSE,1,m_sample_size))
         return(-1);
      //--- get series Mean
      double m=vtemp.Mean();
      //--- get series Std
      double s=vtemp.Std();
      //--- normalize
      vtemp-=m;
      vtemp/=s;
      x_norm.Col(vtemp,0);
      //--- fast sma
      if(CopyBuffer(m_sma_fast,0,1,m_sample_size,ma_buffer)!=m_sample_size)
         return(-1);
      vtemp.Assign(ma_buffer);
      m=vtemp.Mean();
      s=vtemp.Std();
      vtemp-=m;
      vtemp/=s;
      x_norm.Col(vtemp,1);
      //--- slow sma
      if(CopyBuffer(m_sma_slow,0,1,m_sample_size,ma_buffer)!=m_sample_size)
         return(-1);
      vtemp.Assign(ma_buffer);
      m=vtemp.Mean();
      s=vtemp.Std();
      vtemp-=m;
      vtemp/=s;
      x_norm.Col(vtemp,2);
   
      //--- run the inference
      input_data.Assign(x_norm);
      if(!OnnxRun(m_handle,ONNX_NO_CONVERSION,input_data,output_data))
         return(-1);
      //--- evaluate prediction
      return(int(output_data.ArgMax()));
     }
  };
//+------------------------------------------------------------------+

Assim como na classe anterior, no método Init, o método CheckInit da classe base é chamado, onde é criada uma sessão para o modelo ONNX e os tamanhos dos tensores de entrada e saída são explicitamente configurados.

No método PredictClass, são fornecidas as séries dos últimos 30 preços de fechamento e as médias móveis calculadas. Os dados são normalizados da mesma forma que no treinamento.

Vamos verificar como esse modelo funciona. Para isso, modificaremos apenas duas linhas no expert de teste.

#include "ModelEurusdD1_30Class.mqh"
#include <Trade\Trade.mqh>

input double InpLots = 1.0;    // Lots amount to open position

CModelEurusdD1_30Class ExtModel;
CTrade                 ExtTrade;

Os parâmetros de teste são os mesmos.

Resultados de teste do segundo modelo

Vemos que o modelo está funcionando.


6. Classe para o terceiro modelo

O último modelo é chamado model.eurusd.D1.63.class.onnx. É um modelo de classificação, treinado no EURUSD D1 com séries de 63 preços de fechamento.

//+------------------------------------------------------------------+
//|                                             ModelEurusdD1_63.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#include "ModelSymbolPeriod.mqh"

#resource "Python/model.eurusd.D1.63.class.onnx" as uchar model_eurusd_D1_63_class[]

//+------------------------------------------------------------------+
//| ONNX-model wrapper class                                         |
//+------------------------------------------------------------------+
class CModelEurusdD1_63Class : public CModelSymbolPeriod
  {
private:
   int               m_sample_size;

public:
   //+------------------------------------------------------------------+
   //| Constructor                                                      |
   //+------------------------------------------------------------------+
   CModelEurusdD1_63Class(void) : CModelSymbolPeriod("EURUSD",PERIOD_D1,0.0001)
     {
      m_sample_size=63;
     }

   //+------------------------------------------------------------------+
   //| ONNX-model initialization                                        |
   //+------------------------------------------------------------------+
   virtual bool Init(const string symbol, const ENUM_TIMEFRAMES period)
     {
      //--- check symbol, period, create model
      if(!CModelSymbolPeriod::CheckInit(symbol,period,model_eurusd_D1_63_class))
        {
         Print("model_eurusd_D1_63_class : initialization error");
         return(false);
        }

      //--- since not all sizes defined in the input tensor we must set them explicitly
      //--- first index - batch size, second index - series size
      const long input_shape[] = {1,m_sample_size};
      if(!OnnxSetInputShape(m_handle,0,input_shape))
        {
         Print("model_eurusd_D1_63_class : OnnxSetInputShape error ",GetLastError());
         return(false);
        }
   
      //--- since not all sizes defined in the output tensor we must set them explicitly
      //--- first index - batch size, must match the batch size of the input tensor
      //--- second index - number of classes (up, same or down)
      const long output_shape[] = {1,3};
      if(!OnnxSetOutputShape(m_handle,0,output_shape))
        {
         Print("model_eurusd_D1_63_class : OnnxSetOutputShape error ",GetLastError());
         return(false);
        }
      //--- ok
      return(true);
     }

   //+------------------------------------------------------------------+
   //| Predict class                                                    |
   //+------------------------------------------------------------------+
   virtual int PredictClass(void)
     {
      static vectorf input_data(m_sample_size);  // vector for prepared input data
      static vectorf output_data(3);             // vector to get result
   
      //--- request last bars
      if(!input_data.CopyRates(m_symbol,m_period,COPY_RATES_CLOSE,1,m_sample_size))
         return(-1);
      //--- get series Mean
      float m=input_data.Mean();
      //--- get series Std
      float s=input_data.Std();
      //--- normalize prices
      input_data-=m;
      input_data/=s;
   
      //--- run the inference
      if(!OnnxRun(m_handle,ONNX_NO_CONVERSION,input_data,output_data))
         return(-1);
      //--- evaluate prediction
      return(int(output_data.ArgMax()));
     }
  };
//+------------------------------------------------------------------+

Este é o modelo mais simples dos três. Portanto, o código do método PredictClass ficou muito compacto.

Vamos alterar novamente duas linhas no expert de teste.

#include "ModelEurusdD1_63Class.mqh"
#include <Trade\Trade.mqh>

input double InpLots = 1.0;    // Lots amount to open position

CModelEurusdD1_63Class ExtModel;
CTrade                 ExtTrade;

E iniciaremos o teste com as mesmas configurações.

Resultados de teste do terceiro modelo

O modelo está funcionando.



7. Combinando todos os modelos em um expert. Votação rígida

Todos os três modelos demonstraram sua eficácia. Agora vamos tentar combinar seus esforços. Faremos uma votação dos modelos.

Declarações e definições

#include "ModelEurusdD1_10Class.mqh"
#include "ModelEurusdD1_30Class.mqh"
#include "ModelEurusdD1_63Class.mqh"
#include <Trade\Trade.mqh>

input double  InpLots  = 1.0;    // Lots amount to open position

CModelSymbolPeriod *ExtModels[3];
CTrade              ExtTrade;

Função OnInit

int OnInit()
  {
   ExtModels[0]=new CModelEurusdD1_10Class;
   ExtModels[1]=new CModelEurusdD1_30Class;
   ExtModels[2]=new CModelEurusdD1_63Class;

   for(long i=0; i<ExtModels.Size(); i++)
      if(!ExtModels[i].Init(_Symbol,_Period))
         return(INIT_FAILED);
//---
   return(INIT_SUCCEEDED);
  }

Função OnTick

void OnTick()
  {
   for(long i=0; i<ExtModels.Size(); i++)
      if(!ExtModels[i].CheckOnTick())
         return;

//--- predict next price movement
   int returned[3]={0,0,0};
//--- collect returned classes
   for(long i=0; i<ExtModels.Size(); i++)
     {
      int pred=ExtModels[i].PredictClass();
      if(pred>=0)
         returned[pred]++;
     }
//--- get one prediction for all models
   int predicted_class=-1;
//--- count votes for predictions
   for(int n=0; n<3; n++)
     {
      if(returned[n]>=2)
        {
         predicted_class=n;
         break;
        }
     }

//--- check trading according to prediction
   if(predicted_class>=0)
      if(PositionSelect(_Symbol))
         CheckForClose(predicted_class);
      else
         CheckForOpen(predicted_class);
  }

A maioria dos votos é calculada pela fórmula <número total de votos>/2 + 1. Para um número total de votos igual a 3, a maioria é de 2 votos. Isso é chamado de "votação rígida".

Resultado do teste com as mesmas configurações.

Resultados de teste da votação rígida

Lembremos do desempenho de cada um dos três modelos individualmente, ou seja, a quantidade de trades lucrativos e não lucrativos. O primeiro modelo - 11:3, o segundo modelo - 6:1, o terceiro modelo - 16:10. 10.

Parece que, com a votação rígida, melhoramos o resultado - 16:4. 4. No entanto, é claro que precisamos verificar os relatórios completos e os gráficos de teste.


8. Votação Suave

A votação suave difere da votação rígida pelo fato de que não se leva em conta a quantidade de votos, mas sim a soma das probabilidades de todas as três classes de todos os três modelos. E a classe é escolhida com base na probabilidade mais alta.

Para implementar a votação suave, algumas alterações são necessárias.

Na classe base:

   //+------------------------------------------------------------------+
   //| Predict class (regression -> classification)                     |
   //+------------------------------------------------------------------+
   virtual int PredictClass(vector& probabilities)
     {
...
      //--- set predicted probability as 1.0
      probabilities.Fill(0);
      if(predicted_class<(int)probabilities.Size())
         probabilities[predicted_class]=1;
      //--- and return predicted class
      return(predicted_class);
     }

Nas classes filhas:

   //+------------------------------------------------------------------+
   //| Predict class                                                    |
   //+------------------------------------------------------------------+
   virtual int PredictClass(vector& probabilities)
     {
...
      //--- evaluate prediction
      probabilities.Assign(output_data);
      return(int(output_data.ArgMax()));
     }

No expert:

#include "ModelEurusdD1_10Class.mqh"
#include "ModelEurusdD1_30Class.mqh"
#include "ModelEurusdD1_63Class.mqh"
#include <Trade\Trade.mqh>

enum EnVotes
  {
   Two=2,    // Two votes
   Three=3,  // Three votes
   Soft=4    // Soft voting
  };

input double  InpLots  = 1.0;    // Lots amount to open position
input EnVotes InpVotes = Two;    // Votes to make trade decision

CModelSymbolPeriod *ExtModels[3];
CTrade              ExtTrade;
void OnTick()
  {
   for(long i=0; i<ExtModels.Size(); i++)
      if(!ExtModels[i].CheckOnTick())
         return;

//--- predict next price movement
   int    returned[3]={0,0,0};
   vector soft=vector::Zeros(3);
//--- collect returned classes
   for(long i=0; i<ExtModels.Size(); i++)
     {
      vector prob(3);
      int    pred=ExtModels[i].PredictClass(prob);
      if(pred>=0)
        {
         returned[pred]++;
         soft+=prob;
        }
     }
//--- get one prediction for all models
   int predicted_class=-1;
//--- soft or hard voting
   if(InpVotes==Soft)
      predicted_class=(int)soft.ArgMax();
   else
     {
      //--- count votes for predictions
      for(int n=0; n<3; n++)
        {
         if(returned[n]>=InpVotes)
           {
            predicted_class=n;
            break;
           }
        }
     }

//--- check trading according to prediction
   if(predicted_class>=0)
      if(PositionSelect(_Symbol))
         CheckForClose(predicted_class);
      else
         CheckForOpen(predicted_class);
  }

Testamos tudo com as mesmas configurações. Nos parâmetros de entrada, selecionamos "Soft" (suave).

Configurações dos parâmetros de entrada

Obtemos o resultado.

Resultados de teste da votação suave

Trades lucrativos - 15, Trades não lucrativos - 3. Em termos de lucro, a votação rígida também se mostrou superior à suave.


É interessante ver o resultado da votação unânime, ou seja, com três votos.

Resultados de teste da votação unânime

Um estilo de negociação muito conservador. O único trade não lucrativo foi fechado ao final do teste (possivelmente, ela não foi realmente não lucrativa).

Gráfico de teste da votação unânime


Importante: destacamos que os modelos usados neste artigo são apenas para fins de demonstração do uso de modelos ONNX através da linguagem MQL5. O Expert Advisor não deve ser usado para negociações em contas reais.


Considerações finais

Demonstramos como a programação orientada a objetos permite simplificar a escrita de programas. Todas as complexidades dos modelos (e os modelos podem ser muito mais complexos do que os apresentados como exemplo) são encapsuladas em suas classes. E o restante da "complexidade" se encaixou em 45 linhas da função OnTick.


Traduzido do russo pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/ru/articles/12484

Arquivos anexados |
MQL5.zip (190.3 KB)
Matrizes e vetores em MQL5: funções de ativação Matrizes e vetores em MQL5: funções de ativação
Neste artigo, descrevemos apenas um aspecto do aprendizado de máquina, em particular as funções de ativação. Em redes neurais artificiais, a função de ativação de neurônio calcula o valor de um sinal de saída com base nos valores de um sinal de entrada ou de um conjunto de sinais de entrada. Vamos mergulhar nos detalhes internos do processo.
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados
Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 23): FOREX (IV) Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 23): FOREX (IV)
A criação, agora, é efetuada no mesmo ponto que fazemos a conversão dos tickets em barras. Então se algo vim a dar errado durante a conversão, iremos logo notar o erro. Pois o mesmo código que lança as barras de 1 minuto no gráfico, quando fazemos um avanço rápido, também é utilizando pelo sistema de posicionamento, e também é usado para lançar as barras durante o avanço normal. Ou seja, agora o código responsável por tal tarefa, não esta mais sendo duplicado em ponto algum. Desta forma, já temos um sistema bem mais adequado, tanto para manutenção, quanto para melhorias.
Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement) Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)
Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.