VIDYAによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、新しいテクニカルツールについて学び、VIDYA(Variable Index Dynamic Average、可変インデックス動的平均)テクニカル指標によって取引システムを設計する方法を学びます。
ニューラルネットワークが簡単に(第36回):関係強化学習
前回の記事で説明した強化学習モデルでは、元のデータ内のさまざまなオブジェクトを識別できる畳み込みネットワークのさまざまなバリアントを使用しました。畳み込みネットワークの主な利点は、場所に関係なくオブジェクトを識別できることです。同時に、畳み込みネットワークは、オブジェクトやノイズのさまざまな変形がある場合、常にうまく機能するとは限りません。これらは、関係モデルが解決できる問題です。
ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。
MQL5入門(第8回):初心者のためのEA構築ガイド(II)
この記事では、MQL5フォーラムでよく見られる初心者からの質問を取り上げ、実践的な解決策を紹介します。売買やローソク足の価格取得、取引限度額の設定、取引期間や利益/損失の閾値の管理といった基本的なタスクを自動売買で実行する方法を学びます。MQL5でのこれらの概念の理解と実装を強化するため、ステップごとのガイダンスも提供します。
トレードラブ博士または いかに心配することを止め、自習 Expert Advisorを作成したか
ちょうど1年前 jooは彼の記事 "Genetic Algorithms - It's Easy!"の中で MQL5で遺伝的アルゴリズムの実装用ツールを提供してくれました。今われわれはそのツールを使用して特定の境界条件において自身のパラメータを遺伝的に最適化する Expert Advisor を作成しようとしています。
MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第2回):コントロールと応答性の追加
ダイナミックな機能でMQL5のGUIパネルを強化することで、ユーザーの取引体験を大幅に向上させることができます。インタラクティブな要素、ホバー効果、リアルタイムのデータ更新を取り入れることで、パネルは現代のトレーダーにとって強力なツールとなるでしょう。
カスタム指標(第1回):MQL5でシンプルなカスタム指標を開発するためのステップバイステップ入門ガイド
MQL5を使用してカスタム指標を作成する方法を紹介します。この入門記事では、シンプルなカスタム指標を構築するための基本を説明し、この興味深いトピックを初めて学ぶMQL5プログラマーのために、さまざまなカスタム指標をコーディングするための実践的なアプローチを示します。
MetaTrader用の高度なEAコンストラクター - BotBrains.app
この記事では、自動売買ロボットのためのノーコード開発プラットフォームであるBotBrains.appの機能を紹介します。自動売買ロボットを作成するために、コードを書く必要はありません。必要なブロックをスキームにドラッグアンドドロップし、パラメータを設定して、それらの間の接続を確立するだけです。
データサイエンスと機械学習(第02回):ロジスティック回帰
データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。
売買ロボット物語:余計なものがない方がいい?
2年前『最後の聖戦』でひじょうに興味深い、しかし現在広く使用されていないマーケット情報表示方法-ポイント&フィギュアチャート を再検討しました。ここで私はみなさんにポイント&フィギュアチャートで検出されるパターンに基づく売買ロボットを書いてみることを提案します。
2013 年第一四半期 MQL5マーケット実績
設立以来、トレーディングロボットおよびテクニカルインディケータのストアである MQL5 「マーケット」はすでに580件のプロダクツを発表した250名以上の開発者を魅了してきました。2013 年第一四半期は自分のプロダクツを販売することでよい収益を上げることのできた 一部の MQL5 「マーケット」販売者にとってひじょうな成功の時期となりました。
アプリケーションを使用してMQL5の関数を理解する
関数はどのプログラミング言語においても重要なものです。関数は、開発者が同じことを繰り返さないことを意味するDRY (Do not Repeat Yourself)の概念を適用するのに役立つなどの多くのメリットを提供します。この記事では、関数に関する詳細情報と、物事を複雑にすることなく取引システムを強化するために、あらゆるシステムで使用または呼び出しできる簡単なアプリケーションを作成して、MQL5で独自の関数を作成する方法について説明します。
古いトレンドトレーディング戦略の再検討:2つのストキャスティクス、MAとフィボナッチ
古い取引戦略。この記事では、純粋にテクニカルな方法でトレンドをフォローするための戦略の1つを紹介します。これは純粋なテクニカル戦略で、シグナルとターゲットを出すためにいくつかのテクニカル指標とツールを使用します。戦略の構成要素は次の通りです。14期間のストキャスティクス、5期間のストキャスティクス、200期間の移動平均線、フィボナッチ予測ツール(目標設定用)。
データサイエンスと機械学習(第06回):勾配降下法
勾配降下法は、ニューラルネットワークや多くの機械学習アルゴリズムの訓練において重要な役割を果たします。これは、その印象的な成果にもかかわらず、迅速でインテリジェントなアルゴリズムであり、多くのデータサイエンティストによっていまだに誤解されています。
ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。
パターンと例(第I部): マルチトップ
これは、アルゴリズム取引の枠組みにおける反転パターンに関連する連載の最初の記事です。まず、最も興味深いパターンファミリーから始めます。これは、ダブルトップパターンとダブルボトムパターンに由来するものです。
トレード戦略の統計的実行
望まない価格動向からオープンなポジティブスワップポジションを統計的に保護するアルゴリズム。本稿は、オープンポジションの方向とは逆に動く価格の潜在的リスクを補うことができるキャリートレード保護戦略のバリアントを取り上げています。
CCIによる取引システムの設計方法を学ぶ
今回は、取引システムの設計方法を学ぶ連載の新しい記事として、CCI(商品チャンネル指数、Commodities Channel Index)を紹介し、その詳細を説明し、この指標に基づいた取引システムの作り方を紹介します。
トレーディングシステム作成のための判別分析の利用
トレーディングシステムを開発するとき、たいていインディケータとそのシグナルの最良の組合せを選ぶのに問題が起こります。判別分析はそのような組合せを見つける方法の一つです。本稿では、マーケットデータ収集のための EA 開発例を提供し、f Statistica ソフトウェアにおいてFOREXマーケットに対する予測モデル構築のための判別分析の使用を解説します。
一からの取引エキスパートアドバイザーの開発(第18部):新規受注システム(I)
今回は新規受注システムの第一弾です。本連載で紹介し始めてから、このEAは、同じチャート上注文システムモデルを維持しながら様々な変更と改良を受けてきました。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第5部): 取引イベントのクラスとコレクション、プログラムへのイベント送信
前の記事では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。第4部では、口座の取引イベントの追跡をテストしました。本稿では、取引イベントクラスを開発してイベントコレクションに配置します。そこからは、これらはエンジンライブラリの基本オブジェクトとコントロールプログラムチャートに送信されます。
パラボリックSARによる取引システムの設計方法を学ぶ
最も人気のある指標を使用して取引システムを設計する方法についての連載を続けます。この記事では、パラボリックSAR指標について詳しく説明し、いくつかの簡単な戦略を使用してMetaTrader 5で使用する取引システムを設計する方法を学びます。
MQL5用スキャルピングオーダーフロー
このMetaTrader 5エキスパートアドバイザー(EA)は、高度なリスク管理を備えたスキャルピングオーダーフロー戦略を実装しています。複数のテクニカル指標を使用し、オーダーフローの不均衡に基づいて取引機会を特定します。バックテストは潜在的な収益性を示しているが、特にリスク管理と取引結果の比率において、さらなる最適化の必要性を強調しています。経験豊富なトレーダーに適していますが、本番運用の前に十分なテストと理解が必要です。
MQL5.comのフリーランスのお仕事 - 開発者のお気に入りの場所
トレーディングシステムの開発者は、エキスパートアドバイザーを必要とするトレーダーに彼らのサービスをマーケティングする必要はありません - 彼らが探してくれるのです。すでに、何千ものトレーダーがMQL5のフリーランス開発者に注文を頼み、MQL5.comにて作業に支払いを行っています。4年間、このサービスは10000以上もの仕事に対して累計3000人のトレーダーが支払えるようにしてきました。そして、トレーダーと開発者の活動は常に拡大しています。
外部アプリケーションで暗号を使用する
この記事では、MetaTraderや外部アプリケーションでのオブジェクトの暗号化/復号化について考えてみます。 今回の目的は、同じ初期データで同じ結果が得られる条件を決めることです。
ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム
この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第10部): プログラムリソースの作成と格納
この記事では、プログラムのソースコードにデータを保存し、それらから音声ファイルとグラフィックファイルを作成する方法について説明します。アプリケーションを開発するとき、多くの場合、音声と画像が必要です。MQL言語には、このようなデータを使用するいくつかの方法があります。
MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る
この記事では、MQL5のエキスパートアドバイザー(EA)を使用した自動化について詳しく説明し、初期のバックテスト結果を分析します。この戦略には高い保有能力が必要であることを強調し、今後の回で距離、takeProfit、ロットサイズなどの主要パラメータを最適化する計画を概説します。本連載は、取引戦略の効率性と異なる市場環境への適応性を高めることを目的としています。
TDシーケンシャルと一連のMurray-Gannレベルを使用したチャートの分析
TDシーケンシャル(トーマス・デマークのシーケンシャル)は、価格変動のバランスの変化を示すのが得意です。これは、そのシグナルをレベル指標(Murreyレベルなど)と組み合わせると特に明白になります。本稿は、主に初心者や「聖杯」を見つけることができない人を対象としています。また、他のフォーラムでは見たことのないレベル構築の機能をいくつか提示するので、おそらく上級トレーダーにも役立つでしょう... 提案や合理的な批判は大歓迎です...
自己適応アルゴリズム(第III部):最適化の放棄
履歴データに基づく最適化を使用してパラメータを選択する場合、真に安定したアルゴリズムを取得することは不可能です。安定したアルゴリズムは、常時、どんな取引商品で作業していても、必要なパラメータを認識している必要があります。予測や推測ではなく、確実に知っているべきです。
ソーシャルテクノロジースタートアップの構築 パート1: MetaTrader 5 シグナルをツイートする
今日は MetaTrader 5 ターミナルを Twitter とリンクする方法を学習し、EA のトレードシグナルをツイートできるようにします。RESTful ウェブサービスに基づく PHP にソーシャルディシジョン支援システムを作成します。この考えはコンピュータ援用取引と呼ばれる自動トレーディングの特定の概念からきています。われわれは 別の方法でExpert Advisors によって自動でマーケットに出されるトレードシグナルをフィルターにかける人間のトレーダーの認知能力を欲しています。
PatchTST機械学習アルゴリズムによる24時間の値動きの予測
この記事では、PatchTSTと呼ばれる2023年にリリースされた比較的複雑なニューラルネットワークアルゴリズムを適用し、今後24時間の値動きを予測します。公式リポジトリを使用し、若干の修正を加え、EURUSDのモデルを訓練し、PythonとMQL5の両方で将来の予測をおこなうために適用します。
DoEasyライブラリの時系列(第42部): 抽象指標バッファオブジェクトクラス
この記事では、DoEasyライブラリの指標バッファクラスの開発を開始します。さまざまな種類の指標バッファの開発の基礎として使用される抽象バッファの基本クラスを作成します。
MQLプロジェクトでJSON Data APIを使用する
MetaTraderにはないデータを使用できることを想像してみてください。価格分析とテクニカル分析による指標からデータを得るだけです。取引力を一段と高めるデータにアクセスできることを想像してみてください。APIデータを通して他のソフトウェア、マクロ分析手法、超高度ツールの出力をMetaTraderを通じてミックスすれば、MetaTraderソフトウェアのパワーを倍増させることができます。この記事では、APIの使い方を教え、便利で価値のあるAPIデータサービスを紹介します。
価格 Correlationの統計データを基にしたシグナルのフィルタリング
過去の価格変動と将来のトレンドの間に関連はあるのでしょうか?前日の値動き特性が本日繰り返されるのはなぜでしょうか?価格変動予想に統計は有用でしょうか?答えはあり、それはポジティブなものです。もしお疑いならこの記事はそんな方向けです。MQL5のシステムでトレーディングシステム向けの作業フィルター作成方法をお話します。それは価格変動の興味深いパターンを表します。
リプレイシステムの開発 - 市場シミュレーション(第14回):シミュレーターの誕生(IV)
この記事ではシミュレーターの開発段階を続けます。 今回は、ランダムウォークタイプの動きを効果的に作成する方法を見ていきます。このような動きには非常に興味をそそられます。資本市場で起こるすべてのことの基礎がそれによって形成されるためです。さらに、市場分析をおこなう上で基本となるいくつかの概念についても理解を深めていきます。
独自のLLMをEAに統合する(第2部):環境展開例
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
ソースコードのトレーシング デバッギング 構造分析
実行されたコードのストラクチャーの作成とトレーシングの複雑な問題は、特に困難なく解決することができます。これは、MetaTrader5から可能になりました。これは、MQL5言語の新しい機能である、様々な複雑なデータ型の自動生成やローカルスコープ外に出た際の除去などのおかでです。この記事は、その方法論や、すぐ使えるツールを紹介します。