自動で動くEAを作る(第10回):自動化(II)
自動化は、そのスケジュールを制御できなければ意味がありません。1日24時間働く効率的な労働者はいません。しかし、多くの人は、自動化されたシステムは24時間稼働するべきだと考えています。しかし、EAの稼働時間範囲を設定する手段を持つことは常に良いことです。この記事では、このような時間範囲を適切に設定する方法を検討します。
より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと
この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。
トランスダクション・アクティブ機械学習におけるスロープブースト
本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
総合的なフクロウ取引戦略を構築する
私の戦略は、古典的な取引の基礎と、あらゆる種類の市場で広く使用されているインジケータの改良に基づいています。これは既製のツールで、提案された新しい収益性の高い取引戦略に従うことができます。
ニューラルネットワークが簡単に(第4回): リカレントネットワーク
これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。
ONNXをマスターする:MQL5トレーダーにとってのゲームチェンジャー
機械学習モデルを交換するための強力なオープン標準形式であるONNXの世界に飛び込んでみましょう。ONNXを活用することでMQL5のアルゴリズム取引にどのような変革がもたらされ、トレーダーが最先端のAIモデルをシームレスに統合し、戦略を新たな高みに引き上げることができるようになるかがわかります。クロスプラットフォーム互換性の秘密を明らかにし、MQL5取引の取り組みでONNXの可能性を最大限に引き出す方法を学びましょう。ONNXをマスターするためのこの包括的なガイドで取引ゲームを向上させましょう。
自己適応アルゴリズムの開発(第II部): 効率の向上
この記事では、以前に作成したアルゴリズムの柔軟性を向上させることでトピックの開発を続けます。アルゴリズムは、分析期間内のローソク足の数の増加または上昇/下降ローソク足超過率のしきい値の増加によって、より安定しました。分析のためにより大きなサンプルサイズを設定するかより高いローソク足の超過率を設定して、妥協する必要がありました。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第22部): 取引クラス - 基本取引クラス、制限の検証
この記事では、ライブラリベースの取引クラスの開発を開始し、最初のバージョンに取引操作を行うためのアクセス許可の初期検証を追加します。さらに、基本取引クラスの機能とコンテンツをわずかながら拡張します。
Jeremy Scott - MQL5「マーケット」販売の成功者
MQL5.community におけるニックネーム Johnnypasado ことJeremy Scott 氏は MQL5 「マーケット」サービスにプロダクツを提供することで有名になりました。Jeremy は「マーケット」ですでに何千ドルも得ていますが、それで終わるわけではありません。将来の百万長者を詳しく知り MQL5 「マーケット」の販売者に対してなにかアドバイスを得ようと思いました。
DoEasyライブラリの時系列(第35部): バーオブジェクトと銘柄の時系列リスト
本稿は、簡単で迅速なプログラム開発のためのDoEasyライブラリの作成に関する新しいシリーズの始まりとなります。本稿では、銘柄の時系列データにアクセスして操作するためのライブラリ機能を実装します。メインおよび拡張時系列バーデータを格納するバーオブジェクトを作成し、オブジェクトの検索と並び替えを容易にするために、時系列リストにバーオブジェクトを配置します。
ファジー理論を使用しインディケータを作成する簡単な例
本稿はファイナンシャルマーケット分析にファジー理論の概念を実用的に適用することに特化しています。エンベロープインディケータ上で2つのファジールールに基づくインディケータ生成シグナルの例を提供します。作成されたインディケータは複数のインディケータバッファを使用します。7個のバッファを計算に、5個のバッファをチャート表示に、2個をカラーバッファとします。
トレードシステムの評価 - 参入、退出と取引における一般の有効性
トレードシステムの有効性と利益性を決定できる多数の尺度がある。しかし、トレーダーは常にどのシステムでも試したいと考えている。この記事はどのようにして有効性の尺度に基づいた統計が MetaTrader 5 のプラットフォームに使えるかを教えるものである。 これは取引による統計の解釈を、S.V.Bulashev(ブラシェフ)による著作"Statistika dlya traderov"(トレーダーのための統計) の記述に矛盾しないものに変換するクラスを含んでいる。また最適化のためのカスタムファンクションの例も含んでいる。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第24部): 未決取引リクエストの使用 - 初期実装(ポジションのオープン)
本稿では、注文の値にいくつかのデータを格納し、マジックナンバーを配置し、保留中リクエストの実装を開始します。概念を確認するために、サーバエラーを受信して、待機後に繰り返しリクエストを送信する必要がある際にマーケットポジションを開くための最初のテスト保留中リクエストを作成しましょう。
Linux上のMetaTrader 5のC++マルチスレッドサポートを備えた概念実証DLLを開発する
最終製品がWindowsとLinuxシステムの両方でシームレスに動作するMetaTrader 5プラットフォームの開発をLinuxシステムのみでおこなう方法のステップとワークフローを探索する旅を始めます。WineとMinGWについて学ぶことができます。これらはどちらも、クロスプラットフォーム開発を機能させるために不可欠なツールです。特に、MinGWのスレッド実装(POSIXおよびWin32)については、どれを使用するかを選択する際に考慮する必要があります。次に、概念実証のDLLを構築し、それをMQL5コードで使用して、最後に両方のスレッド実装のパフォーマンスを比較します。すべては読者の基盤が自力でさらに拡大するようにするためです。この記事を読めば、LinuxでMT関連のツールを快適に構築できるはずです。
自動で動くEAを作る(第09回):自動化(I)
自動EAの作成はそれほど難しい作業ではありませんが、必要な知識がないと多くの間違いを犯す可能性があります。この記事では、ブレイクイーブンとトレーリングストップレベルを作動させるトリガーの作成からなる自動化の最初のレベルを構築する方法について見ていきます。
Candlestick Trend Constraintモデルの構築(第6回):オールインワン統合
一つの大きな課題は、異なる機能を持つ同じプログラムを、同じ通貨ペアに対して複数のチャートウィンドウで実行し、管理することです。この問題を解決するには、複数の機能を一つのメインプログラムに統合する方法を検討する必要があります。さらに、プログラムの設定を操作ログに出力する方法や、成功したシグナルのブロードキャストをチャートインターフェイス上に表示する方法についても解説します。連載が進むにつれ、この記事でさらに詳しい情報を提供していきます。
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析
この記事では、トレードに適用される OLAP テクノロジを引き続き取り扱います。 最初の 2 つの記事で紹介した機能を拡張します。 今回は、クオートの運用分析について検討します。シェイプセレクタ 集計されたヒストリーデータに基づいて、トレード戦略に関する仮説を打ち出し、テストします。 この記事では、バーパターンとアダプティブトレードを研究するためのEAを紹介します。
MQL5でのもみ合いレンジブレイクアウト戦略に基づくエキスパートアドバイザー(EA)の開発
この記事では、もみ合い期間後の価格ブレイクアウトを活用したエキスパートアドバイザー(EA)の作成手順を説明します。トレーダーは、もみ合いレンジを特定し、ブレイクアウトレベルを設定することで、この戦略に基づいて取引判断を自動化できます。EAは、誤ったブレイクアウトを回避しつつ、明確なエントリポイントとエグジットポイントを提供することを目的としています。
単一チャート上の複数インジケータ(第04部): エキスパートアドバイザーに進む
以前の記事では、複数のサブウィンドウでインジケータを作成する方法を説明しました。これは、カスタムインジケータを使用するときに興味深いものになります。今回は、エキスパートアドバイザーに複数のウィンドウを追加する方法を説明します。
ソフトウェア開発とMQL5におけるデザインパターン(第1回):生成パターン
繰り返し発生する問題の多くを解決するためには、使用できる方法があります。これらの方法の使い方を理解すれば、ソフトウェアを効果的に作成し、DRY (Do not Repeat Yourself)の概念を適用するのに非常に役立ちます。この文脈では、デザインパターンのトピックが非常に役に立ちます。なぜなら、デザインパターンは、よく説明され、繰り返される問題に対する解決策を提供するパターンだからです。
ONNX統合の課題を克服する
ONNXは、異なるプラットフォーム間で複雑なAIコードを統合するための素晴らしいツールです。ただし、この素晴らしいツールを最大限に活用するためにはいくつかの課題に対処する必要があります。この記事では、読者が直面する可能性のある一般的な問題と、それを軽減する方法について説明します。
ニューラルネットワークが簡単に(第48回):Q関数値の過大評価を減らす方法
前回は、連続的な行動空間でモデルを学習できるDDPG法を紹介しました。しかし、他のQ学習法と同様、DDPGはQ関数値を過大評価しやすくなります。この問題によって、しばしば最適でない戦略でエージェントを訓練することになります。この記事では、前述の問題を克服するためのいくつかのアプローチを見ていきます。
ユニバーサルEA:グループでの取引とストラテジーのポートフォリオを管理する(その4)
CStrategyの取引エンジンについての一連の記事の最後のパートでは、XMLファイルからストラテジーをロードする方法を行います。複数の取引アルゴリズムの同時動作を考慮し、単一の実行可能モジュールからのEAを選択する簡単なパネルを提示し、その取引モードを管理します。
固定プライスアクションストップロスまたは固定RSI(スマートストップロス)
ストップロスは、取引における資金管理に関する主要なツールです。ストップロス、テイクプロフィット、ロットサイズを効果的に使用することで、トレーダーは取引の一貫性を改善し、全体的に収益性を高めることができます。ストップロスは優れたツールですが、使用時に課題に遭遇することがあります。主要なものはストップロスハントです。この記事では、取引でのストップロスハントを減らす方法と、従来のストップロスの使用法と比較して収益性を判断する方法について説明します。
エンベロープによる取引システムの設計方法を学ぶ
この記事では、バンドで取引する方法の1つを紹介します。今回はエンベロープについて検討し、それに基づいてストラテジーを作成するのがいかに簡単であるかを見ていきます。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第2部)過去の注文と取引のコレクション
最初の部分では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。過去の注文と取引、および市場の注文とポジションに関するデータを格納するための基本オブジェクトであるCOrder抽象オブジェクトを作成しました。ここでは、口座履歴データをコレクションに格納するために必要なすべてのオブジェクトを開発します。
MQL5.com フリーランス:開発者の収入源(インフォグラフィック)
「MQL5 フリーランスサービス」の4周年を記念して、これまでのサービス結果を示すインフォグラフィックを作成しました。数字は自らを語ります:現在まで合計約 $600,000 に相当する 10,000 を越える注文が実行されるかたわら、 3,000 人の顧客と 300 人の開発者がすでにこのサービスを利用しました。
MVCデザインパターンとその可能なアプリケーション
本稿では、人気高いMVCパターンと、MQLプログラムでの使用の可能性、長所、短所について説明します。アイデアは、既存コードをモデル、ビュー、コントローラの3つの別々のコンポーネントに分割することです。
データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する
今回は、米国経済のファンダメンタルズに基づいて、私たちのロジスティックモデルを使って株式市場の暴落の予測を試みます。NETFLIXとAPPLEが私たちが注目する銘柄です、2019年と2020年の過去の市場の暴落を使って、モデルが現在の破滅と暗雲でどのように機能するか見てみましょう。
ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング
本稿パート1でご紹介した PHP ベースの Twitter の考え方を形にしましょう。の異なるパーツを SDSS 組み立てるのです。システムアーキテクチャのクライアント側において、HTTP を介してトレードシグナルを送信するために新しいMQL5 WebRequest() 関数に頼ります。
自動ニューストレーダーのバインディング
これは一からシンプルなオブジェクト指向 EA を構築する方法を述べ、オブジェクト指向プログラミングのアドバイスを提供したもう一つ別の MQL5 OOP クラス記事の続編です。本稿では、ニュースをトレードすることのできる EA を開発するのに必要とされる技術の基本をお話します。目標は OOP に関する考え方を提示し続け、ファイルシステムと関連づけながらこのシリーズにおける新しいトピックを取り上げることです。
メリルパターンに基づくストラテジービルダー
前回の記事では、通貨シンボルチャートの価格値や標準MetaTrader5インジケータの値(ATR、WPR、CCI、RSIなど)など、さまざまなデータにメリルパターンを適用することを考察しました。 今回はメリルパターンに基づいて戦略構築セットを作成してみましょう。
自動で動くEAを作る(第11回):自動化(III)
自動化されたシステムは、適切なセキュリティなしでは成功しません。ただし、いくつかのことをよく理解していなければ、セキュリティは保証されません。この記事では、自動化されたシステムで最大のセキュリティを達成することがなぜそれほど難しいのかを探ります。
自動トレーディングシステム選手権2010に向けたExpert Advisor迅速作成法
自動トレーディングシステム選手権2010に参加するためのエクスパート開発をめざし、すぐに使えるExpert Advisorテンプレートを使用します。Even novice MQL5プログラマの初心者でもこのタスクをこなすことは可能です。というのも戦略のために基本クラス、関数、テンプレートがすでに準備されているからです。よってみなさんのトレーディングの考えに合う最低限のコードを書いて実装すれば十分です。
ギャップ ー 収入戦略か50/50か?
ギャップ現象の研究とは、前の時間枠の終値と次の時間の終値との間の有意差の状況や、日々のバーの向かう方向を分析することです。関数GetOpenFileNameのDLLシステムを使用します。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第6回):互いのラインを交差する2つのRSI指標
この記事の多通貨EAは、クロスラインを持つ2つのRSI指標、低速RSIと交差する高速RSIを使用するEA(自動売買ロボット)です。
市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成
支持&抵抗戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でEAを作成し、MetaTrader 5でテストするための、価格帯行動の分析からリスク管理までのあらゆる側面に関する詳細情報が含まれます。
MQL5とPythonで自己最適化EAを構築する
この記事では、市況に基づいて取引戦略を自律的に選択変更できるエキスパートアドバイザー(EA)を構築する方法について解説します。マルコフ連鎖の基本を学び、それがアルゴリズムトレードにどのように役立つかを探っていきます。
DoEasyライブラリの時系列(第39部): ライブラリに基づいた指標 - データイベントと時系列イベントの準備
本稿では、DoEasyライブラリを適用して複数の銘柄の複数期間の指標を作成する方法について説明します。指標内で機能するライブラリクラスを準備し、指標のデータソースとして使用される時系列の作成をテストします。時系列イベントの作成と送信も実装します。
一からの取引エキスパートアドバイザーの開発(第31部):未来に向かって(IV)
引き続きEAから分離した部分を取り除きます。本連載は今回で最終回です。そして、最後に取り除くのがサウンドシステムです。この連載をご覧になっていない方には、少し分かりにくいかもしれません。