リプレイシステムの開発(第50回):物事は複雑になる(II)
チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。
多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備
現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造
ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。
リプレイシステムの開発(第65回)サービスの再生(VI)
この記事では、リプレイ/シミュレーションアプリケーションと併用する際に発生するマウスポインタの問題について、その実装と解決方法を解説します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備
この記事では、MQL5の取引システムをストラテジーテスターでの検証に対応するため、経済指標カレンダーのデータをリソースとして埋め込み、ライブ環境ではないテスト分析に活用する方法を解説します。イベントの読み込みと、時間・通貨・影響度に基づくフィルタリングを実装し、最終的にストラテジーテスター内でその動作を検証します。これにより、ニュースに基づいた戦略の効果的なバックテストが可能になります。
タブーサーチ(TS)
この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス
この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
人工藻類アルゴリズム(AAA)
本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。
知っておくべきMQL5ウィザードのテクニック(第73回):一目均衡表とADX-Wilderのパターンの利用
一目均衡表とADX-Wilderオシレーターは、MQL5のエキスパートアドバイザー(EA)内で補完的に使用できる組み合わせです。一目均衡表は多機能な指標ですが、本記事では主にサポート・レジスタンス(S/R)レベルを定義する目的で使用します。一方、ADXはトレンドの判定に使用します。通常通り、MQL5ウィザードを用いて構築し、両者が持つ潜在能力をテストします。
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ
本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。
原子軌道探索(AOS)アルゴリズム:改良版
第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。
リプレイシステムの開発(第75回):新しいChart Trade(II)
この記事では、C_ChartFloatingRADクラスについて説明します。これはChart Tradeを機能させるための要となる部分です。ただし、解説はこれで終わりではありません。本記事の内容はかなり広範かつ深い理解を必要とするため、続きは次回の記事で補完します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
母集団最適化アルゴリズム:極値から抜け出す力(第II部)
母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
リプレイシステムの開発(第74回):新しいChart Trade(I)
この記事では、Chart Tradeに関する本連載の最後に示したコードを修正します。これらの変更は、現在のリプレイ/シミュレーションシステムのモデルにコードを適合させるために必要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
動物移動最適化(AMO)アルゴリズム
この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。
最適化におけるカスタム基準への新しいアプローチ(第1回):活性化関数の例
これは、カスタム基準に関する数学的考察をおこなう連載記事の第1回目です。特に、ニューラルネットワークで使用される非線形関数、実装用のMQL5コード、さらにターゲットオフセットや補正オフセットの活用に焦点を当てています。
適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法
この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。
原子軌道探索(AOS)アルゴリズム
この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。
リプレイシステムの開発(第60回):サービスの再生(I)
これまで長い間インジケーターだけに取り組んできましたが、今度はサービスを再び稼働させて、提供されたデータに基づいてチャートがどのように構築されるかを確認するときが来ました。しかし、すべてがそれほど単純ではないので、先に何が待ち受けているのかを理解するために注意深くならなければなりません。
リプレイシステムの開発(第72回):異例のコミュニケーション(I)
私たちが本日作成する内容は、理解が難しいものになるでしょう。したがって本稿では、初期段階についてのみ説明します。この段階は次のステップに進むための重要な前提条件となるため、ぜひ注意深く読んでください。この資料の目的はあくまで学習にあります。提示された概念を実際に応用するのではなく、あくまで理解・習得することが目的です。
リプレイシステムの開発(第66回)サービスの再生(VII)
この記事では、チャート上に新しいバーがいつ表示されるかを判断するための、最初のソリューションを実装します。このソリューションは、さまざまな状況に応用可能です。その仕組みを理解することで、いくつかの重要なポイントを把握する助けとなるでしょう。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
市場シミュレーション(第2回):両建て注文(II)
前回の記事とは異なり、今回はエキスパートアドバイザー(EA)を用いて選択オプションをテストしてみます。最終的な解決策ではありませんが、現時点では十分な内容となっています。本記事を通じて、1つの実現可能な解決方法の実装手順を理解できます。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略
高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用
ビル・ウィリアムズが開発したゲーターオシレーター(Gator Oscillator)とA/Dオシレーター(Accumulation/Distribution Oscillator)は、MQL5のエキスパートアドバイザー(EA)内で調和的に活用できるインジケーターペアの一例です。ゲーターオシレーターはトレンドを確認するために使用し、A/Dオシレーターは出来高を通じてそのトレンドを検証する補助指標として機能します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
市場シミュレーション(第3回):パフォーマンスの問題
時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
循環単為生殖アルゴリズム(CPA)
本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。
MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント
Pythonのscheduleモジュールは、繰り返しタスクをスケジュールする簡単な方法を提供します。MQL5には組み込みの同等機能はありませんが、この記事ではMetaTrader 5でのタイムイベントの設定を容易にするために、類似のライブラリを実装します。
カスタム市場センチメント指標の開発
本記事では、複数の時間足を用いて市場センチメントを判定し、強気、弱気、リスクオン、リスクオフ、中立のいずれかに分類するMarket Sentimentカスタムインジケーターの開発について解説します。多時間足分析を組み合わせることで、トレーダーは市場全体の偏りと短期的な動向をより明確に把握できるようになります。
カスタム口座パフォーマンス行列インジケーターの開発
このインジケーターは、口座エクイティ、損益、ドローダウンをリアルタイムで監視し、パフォーマンスダッシュボードとして可視化することで、規律の維持を促す役割を果たします。トレーダーが取引の一貫性を保ち、過剰取引を避け、自己勘定取引会社評価チャレンジ(プロップファームチャレンジ)のルールを遵守するための支援ツールとして機能します。