制御された最適化: シミュレーティットアニーリング
MetaTrader5トレーディングプラットフォームのストラテジーテスターは、パラメータと遺伝的アルゴリズムの完全な検索、つまり、2 つの最適化オプションのみを提供します。 この記事では、トレーディング戦略を最適化するための新しいメソッドを提案します (シミュレーティットアニーリング)。 このメソッドのアルゴリズム、実装、およびEAへの統合を考察します。 開発したアルゴリズムは移動平均 EA でテストします。
トレーダーのリスクを低減するには
金融市場における取引には広範囲のリスクがつきもので、これらは取引システムのアルゴリズムで考慮されるべきです。そのようなリスクを低減することは、取引で利益を得るために最も重要な課題です。
チャネルブレイクアウトパターン
価格トレンドは、金融銘柄チャートで観察できる価格チャネルを形成します。現在のチャネルのブレイクアウトは、強いトレンド反転シグナルの1つです。本稿では、そのようなシグナルを見つける手順を自動化し、チャネルブレイクアウトパターンを取引戦略の作成に使用できるかどうかを確認する方法を提案します。
エントリを指標によって分類する技術を用いた新たな取引戦略の作成
本稿では、個々の指標セットを組み立てることでカスタム取引戦略を作成するとともに、カスタム市場エントリシグナルを開発する技術を提案します。
アジアセッション中の夜間取引: どのように収益性を維持するか
この記事では、夜間取引の概念、および MQL5 におけるトレーディング戦略とその実装について扱います。 テストを通じ、適切な結論を下します。
MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール
この記事では、NRTR インジケーターを分析し、このインジケーターに基づいてトレードシステムを作成します。 追加のトレンド確認インジケーターと NRTR の組み合わせに基づいて戦略を作成する際に使用することができるトレードシグナルのモジュールを開発します。
カルマンフィルタを用いた価格方向予測
トレードで成功するには、ノイズ変動と価格変動を分けることができるインジケーターが必要です。 この記事では、最も有望なデジタルフィルタ、カルマンフィルタを検討します。 フィルタを描画して使用する方法について説明します。
インジケーターへのエントリの解決
トレーダーにはさまざまな事態が発生します。 多くの場合、勝ちトレードは、負けトレードと照らし合わせながら、戦略を再構成することができます。 どちらの場合でも、既知のインジケーターとトレードを比較します。 この記事では、インジケーターを使ったトレードの比較方法を考察します。
戦略バランス曲線の品質評価としての R 乗
この記事では、カスタム最適化基準R乗の構築について扱います。 この基準は、戦略のバランス曲線の品質を推定し、安定した戦略を構築するために使うことができます。 今回は、このメトリックのプロパティと品質の推定に使用される、構造と統計的手法について説明します。
取引戦略におけるファジー論理
本稿では、ファジーライブラリを使用して、ファジー論理を適用した簡単な取引システムの構築例を検討します。ファジー論理、遺伝的アルゴリズムおよびニューラルネットワークを組み合わせることによりシステムを改良するための変形が提案されます。
適応型相場の実用的評価法
この記事で提案するトレーディングシステムは、株価を分析するための数学的ツールです。 ディジタルフィルタリングと離散時系列のスペクトル推定を適用します。 戦略の理論的側面について説明し、テストEAを作成します。
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス
この記事では、クロスプラットフォームのEAについて扱っています。主にクラス CExpertAdvisor と CExpertAdvisors は、この記事で説明した他のすべてのコンポーネントのコンテナとして機能します。
クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング
この記事では、クロスプラットフォームEAでのカスタムストップレベルの設定方法について説明します。 また、時間の経過とともにストップレベルを設定するメソッドについても説明します。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
トレードオブジェクト: メタトレーダーのグラフィカルオブジェクトに基づいたトレードの自動化
この記事では、チャートのリニアマークアップに基づいて自動トレーディングシステムを作成するための簡単なアプローチを扱います。MetaTrader4 およびMetaTrader5のオブジェクトの標準プロパティを使用して既製EAを提供し、トレードオペレーションをサポートしています。
ディープニューラルネットワーク(その3)サンプル選択と次元削減
本稿は、ディープニューラルネットワークに関する一連の記事の続きです。ここでは、ニューラルネットワークの訓練データの準備に当たってのサンプルの選択(ノイズ除去)、入力データの次元数の削減、及びデータセットの訓練/検証/テストセットへの分割を検討します。
ディープニューラルネットワーク(その1)データの準備
この一連の記事では、取引を含んだ多くの分野で応用されているディープニューラルネットワーク(DNN)の探索を続けます。ここでは、実践的な実験によって新しい方法や概念をテストするとともにこのテーマの新しい次元を探求する予定です。シリーズの最初の記事は、DNNのデータを準備することを目的としています。
一連の指標シグナルに対する単純ベイズ分類器
本稿では、複数の独立した指標からのシグナルを使用して取引システムの信頼性を向上させるベイズの公式の適用を分析します。理論計算は、任意の指標で動作するように構成された単純な汎用EAで検証されます。
クロスプラットフォームEA: タイムフィルタ
この記事では、クロスプラットフォームEAによるさまざまな時間フィルタリングメソッドの実装について説明します。 時間フィルタクラスは、特定の時間が一定の時間構成設定に該当するかどうかをチェックします。
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測
本稿では、ベイズの定理に基づいた特異スペクトル解析(SSA)と重要な機械学習法の予測機能を組み合わせて、時間効率の良い取引のための推奨システムを構築するというイデオロギーと方法論について検討します。
クロスプラットフォームEA: マネーマネジメント
この記事では、クロスプラットフォームEAの マネーマネジメントメソッドの実装について説明します。 マネーマネジメントクラスは、EAによってエントリーされる次のトレードに使用するロットサイズの計算を担当します。
クロスプラットフォームEA: シグナル
この記事では、クロスプラットフォームEAで使用される CSignal および CSignals クラスについて解説します。 MQL4 と MQL5 の違いについて、トレードシグナルの評価に必要なデータがどのようにアクセスされるかを調べ、記述されたコードが両方のコンパイラと互換性があることを確認します。
クロスプラットフォームEA: オーダーマネージャ
この記事では、クロスプラットフォームEAのオーダーマネージャの作成について説明します。 オーダーマネージャは、EAによってエントリーされたオーダーと決済、および両方で独立した記録を保持します。
10のトレンド戦略による比較分析
この記事では、10のトレンドのテスト結果と比較分析の概要を説明します。 得られた結果に基づいて、トレンドの妥当性、メリット、デメリットについて一般的な結論を導きます。
MQL5 クックブック-ピボットトレーディングシグナル
この記事では、ピボットの反転に基づいたシグナルのクラスの開発と実装について説明します。 このクラスは、標準ライブラリを適用する戦略を形成するために使用されます。 フィルタを追加することにより、ピボット戦略を改善することができるでしょう。
MetaTrader 4でMQL5ウィザードの既製エキスパートアドバイザーが機能
本稿ではMetaTrader 4のためのMetaTrader 5取引環境の簡単なエミュレータについてお話しします。このエミュレータは標準ライブラリの取引クラスの移行と調整を実装するものです。その結果、MetaTrader 5ウィザードで生成されたエキスパートアドバイザーは、そのままMetaTrader 4でコンパイルして実行することができます。
指定した価格変動に基づく極値点の自動検出
グラフィカルパターンを使った自動トレード戦略には、極値を検索する機能が必要です。既存のツールは、必ずしもこのような機能がありません。この記事で説明されているアルゴリズムは、チャート上のすべての極値を検出できます。ここで説明するツールは、トレンドやレンジに効率的です。得られた結果は選択した期間によって強く影響を受けず、指定したスケールでのみ定義されています。
「タートルスープ」トレードシステムと ' タートル スープ プラス一 '
この記事では、2つのトレードシステム「タートルスープ」と「タートル スープ プラスワン'のルールについて扱います。リンダ ・ ブラッドフォード ・ ラシュキ と ローレンス a. コナーズによる 高確率短期のトレード戦略です。この戦略は、かなり人気があります。15~20年間の相場の動きに基づいてを開発したものです。
ニューラル ネットワーク: EAの自己最適化
ポジションを最適化し、コードのコマンドに従って定期的に条件を終了するEAを開発します。ニューラル ネットワーク (多層パーセプトロン) を分析し、戦略を実現するためのモジュールの形式で実装します。毎月 (毎週、毎日、または毎時) ニューラル ネットワークを最適化する EAを作成します。したがって、自己最適化 EA を開発します。
スタックRBMとディープニューラルネットワーク。セルフトレーニング、及びセルフコントロール
この記事では、ディープニューラルネットワークと予測の選択に関する以前の記事の続きです。ここでは、スタックRBMによって開始されたニューラルネットワークの関数を扱い、「darch」パッケージの実装をします。
クロスプラットフォームEA:オーダー
MT4とMT5は、トレードリクエストで異なるルールを使用しています。この記事では、トレードプラットフォームとバージョンにかかわらず、クロスプラットフォームEAとして稼働する、クラスオブジェクトを使用します。
MQL5クックブック - 移動チャンネルのシグナルトレーディング
この記事では、移動チャネルに基づいたシグナルを送信するクラスを実装するプロセスについて説明します。各々は、テスト結果を取引戦略が引き続きます。標準ライブラリのクラスは派生クラスを作成するために使用します。
クロスプラットフォームEA:MQL5標準ライブラリからコンポーネントの再利用
クロスプラットフォームEAはMQL4に有用であり、MQL5標準ライブラリ内に一部コンポーネントが存在します。 この記事では、MQL4コンパイラと互換性のあるMQL5標準ライブラリの特定コンポーネントを作るメソッドを取り扱います。
クロスプラットフォームEA:序章
この記事では、クロスプラットフォームのEAを容易に開発できるメソッドを詳述します。提案メソッドは、両方のバージョンによって共有関数を統合し、互換性のない関数の派生クラスを分割します。
トレーディングロボットのためのFalseトリガー保護
取引システムの収益は、ロジックのアルゴリズムの品質にだけでなく、ロジックや金融商品のダイナミクスの解析の精度により、決定されます。Falseトリガーは、取引ロボットのメイン・ロジックを低品質なものにします。指定された問題を解決する方法は、この記事で考慮されています。
レンジやトレンド相場を例にストラテジーテスターを使ったインジケーターの最適化
多くの戦略では、レンジか否かを検出することが不可欠です。ストラテジーテスターを使用する方法を示し、ADXを最適化します。同様に、このインジケータがニーズを満たすかどうかを決定し、レンジやトレンドの平均を知ることができます。
機械学習モデルの評価と変数の選択
この記事では、機械学習モデルで使用する入力変数(予測変数)の選択、前処理および評価の詳細に焦点を当てています。新しいアプローチと予測分析とモデルの可能性と過学習への影響を考慮します。モデルを使用した全体的な結果は、この段階の結果に依存します。予測変数の選択に、新しい、オリジナルなアプローチを提供します。