
Aprendizaje automático y Data Science (Parte 02): Regresión logística
La clasificación de los datos es un punto crucial para los tráders algorítmicos y los programadores. En este artículo, nos centraremos en uno de los algoritmos logísticos de clasificación que podría ayudarnos a identificar los síes o los noes, las subidas y bajadas, las compras y las ventas.


Aprendiendo a diseñar un sistema de trading con Envelopes
En este artículo, compartiré con ustedes uno de los métodos para comeciar con bandas. Esta vez analizaremos el indicador Envelopes y veremos lo fácil que resulta crear algunas estrategias basadas en él.

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte I): Creamos un sencillo asesor de cobertura
Hoy crearemos un sencillo asesor de cobertura como base para nuestro asesor Grid-Hedge más avanzado, que será una mezcla de estrategias de rejilla y cobertura clásicas. Al final de este artículo, usted sabrá cómo crear una estrategia de cobertura simple y lo que la gente opina sobre la rentabilidad de esta estrategia.

Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.

Aprendiendo a diseñar un sistema comercial basado en Parabolic SAR
Esta es la continuación de una serie de artículos en los que aprendemos cómo crear sistemas comerciales usando los indicadores más populares. En el presente artículo, analizaremos el indicador Parabolic SAR. También desarrollaremos un sistema comercial para la plataforma MetaTrader 5 usando algunas estrategias simples.

Aprendiendo a diseñar un sistema de trading con OBV
En este nuevo artículo de nuestra serie para principiantes en programación MQL5, aprenderemos a construir sistemas de trading usando los indicadores más populares. En esta ocasión, analizaremos el indicador On Balance Volume (OBV), aprenderemos a utilizarlo y también a crear un sistema comercial basado en él.

Desarrollamos el indicador True Strength Index personalizado utilizando MQL5
Les presento un nuevo artículo sobre la creación de indicadores personalizados. Esta vez trabajaremos con el True Strength Index (TSI) y crearemos un asesor basado en él.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 5): Bandas de Bollinger en el Canal de Keltner - Señales de Indicador
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. En este artículo, usaremos las señales de dos indicadores, las Bandas de Bollinger® y el Canal de Keltner.

La técnica comercial RSI Deep Three Move
El presente artículo muestra la técnica comercial RSI Deep Three Move en MetaTrader 5. El artículo se basa en una nueva serie de estudios que demuestran varias técnicas comerciales basadas en el RSI, así como un indicador técnico para medir la fuerza y el impulso de los valores, incluidas las acciones, las divisas y las materias primas.


Aprendiendo a diseñar un sistema comercial basado en CCI
En este nuevo artículo de nuestra serie sobre el diseño de sistemas comerciales, hablaremos del Índice del Canal de Mercaderías (CCI), estudiaremos sus entresijos y crearemos juntos un sistema comercial basado en este indicador.

Aprendiendo a diseñar un sistema de trading basado en el Índice de Facilitación del Mercado MFI de Bill Williams
Bienvenidos a nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. Hoy analizaremos el Índice de Facilitación del Mercado (MFI), desarrollado por Bill Williams.

Trading de pares
En este artículo analizaremos el trading de pares: qué principios lo sustentan, y si existen perspectivas de su aplicación en la práctica. Al mismo tiempo, intentaremos crear una estrategia de trading de pares.

Cómo construir un EA que opere automáticamente (Parte 04): Gatillos manuales (I)
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura.

Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización
Sumérjase en el corazón de las redes neuronales mientras desmitificamos los algoritmos de optimización utilizados dentro de la red neuronal. En este artículo, descubra las técnicas clave que liberan todo el potencial de las redes neuronales, impulsando sus modelos a nuevas cotas de precisión y eficacia.

Aprendiendo a diseñar un sistema de trading con Accelerator Oscillator
Aquí tenemos un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. Esta vez analizaremos el indicador Accelerator Oscillator: aprenderemos a utilizarlo y a crear sistemas comerciales basados en él.

Aprendiendo a diseñar un sistema de trading con Bulls Power
Bienvenidos a un nuevo artículo de la serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, hablaremos sobre el índice de fuerza alcista Bulls Power y crearemos un sistema comercial basado en sus indicadores.

Experimentos con redes neuronales (Parte 1): Recordando la geometría
Las redes neuronales lo son todo. En este artículo, usaremos la experimentación y enfoques no estándar para desarrollar un sistema comercial rentable y comprobaremos si las redes neuronales pueden ser de alguna ayuda para los comerciantes.

Cómo construir un EA que opere automáticamente (Parte 15): Automatización (VII)
Para coronar esta secuencia sobre automatización vamos a complementar lo visto en el artículo anterior. Este muestra definitivamente cómo todo encajará, haciendo que el Asesor Experto funcione como un reloj.

Redes neuronales: así de sencillo (Parte 31): Algoritmos evolutivos
En el artículo anterior, comenzamos a analizar los métodos de optimización sin gradiente, y también nos familiarizamos con el algoritmo genético. Hoy continuaremos con el tema iniciado, y estudiaremos otra clase de algoritmos evolutivos.

Paradigmas de programación (Parte 2): Enfoque orientado a objetos para el desarrollo de EA basados en la dinámica de precios
En este artículo hablaremos sobre el paradigma de la POO y su aplicación en el código MQL5. Este será el segundo artículo de la serie. En él aprenderemos las características de la programación orientada a objetos y analizaremos ejemplos prácticos. La última vez escribimos un Asesor Experto basado en la Acción del Precio (Price Action) utilizando el indicador EMA y datos de velas. Ahora convertiremos su código procedimental en un código orientado a objetos.

Previsión usando modelos ARIMA en MQL5
En este artículo, continuaremos el desarrollo de la clase CArima para construir modelos ARIMA añadiendo métodos de predicción intuitivos.

Esperanza moral en el trading
Este artículo trata sobre la esperanza moral. Veremos varios ejemplos de su uso en el trading y qué resultados se pueden lograr con su ayuda.

Redes neuronales: así de sencillo (Parte 82): Modelos de ecuaciones diferenciales ordinarias (NeuralODE)
En este artículo, hablaremos de otro tipo de modelos que están destinados a estudiar la dinámica del estado ambiental.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram
En este artículo, creamos un Asesor Experto (EA) en MQL5 para enviar mensajes a Telegram usando un bot. Configuramos los parámetros necesarios, incluido el token de API del bot y el ID de chat, y luego realizamos una solicitud HTTP POST para entregar los mensajes. Posteriormente, gestionamos la respuesta para garantizar una entrega exitosa y solucionar cualquier problema que surja en caso de falla. Esto garantiza que enviemos mensajes desde MQL5 a Telegram a través del bot creado.

Paradigmas de programación (Parte 1): Enfoque procedimental para el desarrollo de un asesor basado en la dinámica de precios
Conozca los paradigmas de programación y su aplicación en el código MQL5. En este artículo, analizaremos las características de la programación procedimental y ofreceremos ejemplos prácticos. Asimismo, aprenderemos a desarrollar un asesor basado en la acción del precio (Action Price) utilizando el indicador EMA y datos de velas. Además, el artículo introduce el paradigma de la programación funcional.


Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico
En el presente artículo, iniciaremos un nuevo apartado del trabajo con gráficos. En esta ocasión, vamos a crear el objeto de estado del ratón, el objeto básico de todos los elementos gráficos y la clase de objeto de formulario de los elementos gráficos de la biblioteca.

Cómo construir un EA que opere automáticamente (Parte 06): Tipos de cuentas (I)
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Hasta ahora nuestro EA puede funcionar en cualquier tipo de situación, pero aún no está listo para ser automatizado, por lo que tenemos que hacer algunas cosas.

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes
Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.

Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst
El exponente de Hurst es una medida del grado de autocorrelación de una serie temporal a largo plazo. Se entiende que capta las propiedades a largo plazo de una serie temporal y, por tanto, tiene cierto peso en el análisis de series temporales, incluso fuera de las series temporales económicas/financieras. Sin embargo, nos centramos en sus posibles beneficios para los operadores, examinando cómo esta métrica podría combinarse con las medias móviles para crear una señal potencialmente sólida.

Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)
Seguimos explorando el aprendizaje por refuerzo. En este artículo, hablaremos del método de aprendizaje Q profundo o deep Q-learning. El uso de este método permitió al equipo de DeepMind crear un modelo capaz de superar a los humanos jugando a los videojuegos de ordenador de Atari. Nos parece útil evaluar el potencial de esta tecnología para las tareas comerciales.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram
En este artículo, creamos un Asesor Experto MQL5 que codifica capturas de pantalla de gráficos como datos de imagen y las envía a un chat de Telegram a través de peticiones HTTP. Al integrar la codificación y transmisión de fotos, mejoramos el sistema existente MQL5-Telegram con perspectivas visuales de trading directamente dentro de Telegram.

Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)
En este artículo, le presentamos el algoritmo GTGAN, introducido en enero de 2024 para resolver problemas complejos de disposición arquitectónica con restricciones gráficas.

Redes neuronales: así de sencillo (Parte 14): Clusterización de datos
Lo confieso: ha pasado más de un año desde que publiqué el último artículo. En tanto tiempo, me ha sido posible repensar mucho, desarrollar nuevos enfoques. Y en este nuevo artículo, me gustaría alejarme un poco del método anteriormente usado de aprendizaje supervisado, y sugerir una pequeña inmersión en los algoritmos de aprendizaje no supervisado. En particular, vamos a analizar uno de los algoritmos de clusterización, las k-medias.

Trailing stop en el trading
En este artículo, analizaremos el uso del trailing stop en el trading: su utilidad y eficacia, y cómo podemos utilizarlo. La eficacia de un trailing stop depende en gran medida de la volatilidad del precio y de la selección del nivel de stop loss. Para fijar un stop loss pueden usarse diversos métodos.

Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)
El presente artículo describimos un modo de optimización rápida usando el método de enjambre de partículas, y presentamos una implementación en MQL lista para utilizar tanto en el modo de flujo único dentro de un EA, como en el modo paralelo de flujo múltiples como un complemento ejecutado en los agentes locales del simulador.

Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)
Saber cómo introducir los datos de la Web en un EA no es tan obvio, o mejor dicho, no es tan simple que puede hacerse sin conocer y entender realmente todas las características que están presentes en MetaTrader 5.

Aprendiendo a diseñar un sistema de trading con Williams PR
Aquí tenemos un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En dicha serie, escribimos sistemas en el lenguaje MQL5 para su uso en MetaTrader 5. En este artículo, analizaremos el indicador de rango porcentual de Williams (Williams' %R).

Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji
El indicador sobre metabarras ha detectado más velas que el clásico. Veamos si aporta un beneficio real en el trading automatizado.

Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5
Este artículo describe los pasos para implementar Deus EA basado en los indicadores RSI y promedio móvil para guiar el trading automatizado.

Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)
En este artículo, le presentaremos un interesante algoritmo que se basa en la intersección de los métodos de aprendizaje supervisado y por refuerzo.