
Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes
En esta serie de artículos, analizaremos empíricamente las estrategias comerciales clásicas para ver si podemos mejorarlas utilizando IA. En la discusión de hoy, intentamos predecir máximos más altos y mínimos más bajos utilizando el modelo de análisis discriminante lineal.

Implementación de una estrategia de trading con Bandas de Bollinger en MQL5: Guía paso a paso
Una guía paso a paso para implementar un algoritmo de trading automatizado en MQL5 basado en la estrategia de trading de las Bandas de Bollinger. Un tutorial detallado basado en la creación de un Asesor Experto que puede ser útil para los traders.

Creación de un panel de indicadores de fuerza relativa (RSI) dinámico, multisímbolo y multiperíodo en MQL5
En este artículo, desarrollamos un panel dinámico de indicadores RSI multisímbolo y multiperiodo en MQL5, que proporciona a los operadores valores RSI en tiempo real a través de varios símbolos y marcos temporales. El panel cuenta con botones interactivos, actualizaciones en tiempo real e indicadores codificados por colores para ayudar a los operadores a tomar decisiones informadas.

Análisis del sentimiento en Twitter con sockets
Este innovador bot comercial integra MetaTrader 5 con Python para aprovechar el análisis del sentimiento de las redes sociales en tiempo real para tomar decisiones comerciales automatizadas. Mediante el análisis del sentimiento en Twitter relacionado con instrumentos financieros específicos, el bot traduce las tendencias de las redes sociales en señales de negociación procesables. Utiliza una arquitectura cliente-servidor con comunicación por socket, lo que permite una interacción perfecta entre las capacidades de negociación de MT5 y la potencia de procesamiento de datos de Python. El sistema demuestra el potencial de combinar las finanzas cuantitativas con el procesamiento del lenguaje natural, ofreciendo un enfoque de vanguardia para el comercio algorítmico que aprovecha fuentes de datos alternativas. Si bien muestra potencial, el bot también destaca áreas para mejoras futuras, incluidas técnicas de análisis de sentimientos más avanzadas y estrategias mejoradas de gestión de riesgos.

Redes neuronales en el trading: Reducción del consumo de memoria con el método de optimización Adam (Adam-mini)
Una forma de mejorar la eficacia del proceso de aprendizaje y la convergencia de los modelos es mejorar los métodos de optimización. Adam-mini es un método de optimización adaptativa desarrollado para mejorar el algoritmo Adam básico.

Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)
En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.

Reimaginando las estrategias clásicas (Parte II): Ruptura de las Bandas de Bollinger
Este artículo explora una estrategia comercial que integra el análisis discriminante lineal (Linear Discriminant Analysis, LDA) con las Bandas de Bollinger, aprovechando las predicciones de zonas categóricas para obtener señales estratégicas de entrada al mercado.

Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias
Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.

Combinación de estrategias de análisis técnico y fundamental en MQL5 para principiantes
En este artículo, analizaremos cómo integrar sin problemas el seguimiento de tendencias y los principios fundamentales en un Asesor Experto para crear una estrategia más sólida. Este artículo demostrará lo fácil que es para cualquiera comenzar a desarrollar algoritmos comerciales personalizados utilizando MQL5.

Redes neuronales en el trading: Representación lineal por partes de series temporales
Este artículo es algo distinto de los anteriores de esta serie. En él, hablaremos de una representación alternativa de las series temporales. La representación lineal por partes de series temporales es un método de aproximación de una serie temporal usando funciones lineales en intervalos pequeños.

Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer
Al estudiar las distintas arquitecturas de construcción de modelos, prestamos poca atención al proceso de entrenamiento de los mismos. En este artículo intentaremos rellenar ese vacío.

Introducción a MQL5 (Parte 8): Guía del trading algorítmico para principiantes (II)
Este artículo aborda preguntas comunes de principiantes en los foros de MQL5 y demuestra soluciones prácticas. Aprenda a realizar tareas esenciales como comprar y vender, obtener precios de velas y administrar aspectos del trading automatizado como límites de trading, períodos de trading y umbrales de ganancias/pérdidas. Obtenga orientación paso a paso para mejorar su comprensión e implementación de estos conceptos en MQL5.

Redes neuronales: así de sencillo (Parte 96): Extracción multinivel de características (MSFformer)
Extraer y combinar eficazmente las dependencias a largo plazo y las características a corto plazo sigue siendo una tarea importante en el análisis de series temporales. Para crear modelos predictivos precisos y fiables deberemos comprender e integrar estos adecuadamente.

Desarrollo de un Asesor Experto (EA) en MQL5 basado en la estrategia de ruptura del rango de consolidación
Este artículo describe los pasos para crear un Asesor Experto (EA) que aproveche las rupturas de precios después de los períodos de consolidación. Al identificar rangos de consolidación y establecer niveles de ruptura, los operadores pueden automatizar sus decisiones comerciales basándose en esta estrategia. El Asesor Experto tiene como objetivo proporcionar puntos de entrada y salida claros y evitar rupturas falsas.

Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores
Los modelos basados en la arquitectura de transformadores demuestran una gran eficacia, pero su uso se complica por el elevado coste de los recursos tanto en la fase de formación como durante el funcionamiento. En este artículo, propongo familiarizarse con los algoritmos que permiten reducir el uso de memoria de tales modelos.

La teoría del caos en el trading (Parte 1): Introducción, aplicación a los mercados financieros e indicador de Lyapunov
¿Puede aplicarse la teoría del caos a los mercados financieros? En este artículo analizaremos en qué se diferencian la teoría clásica del caos y los sistemas caóticos del concepto propuesto por Bill Williams.

Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada
Al trabajar con series temporales, siempre utilizamos los datos de origen en su secuencia histórica. Pero, ¿es ésta la mejor opción? Existe la opinión de que cambiar la secuencia de los datos de entrada mejorará la eficacia de los modelos entrenados. En este artículo te invito a conocer uno de los métodos para optimizar la secuencia de entrada.

Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)
En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.

Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos
En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos
El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5
El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.

Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta
Mejorar el panel GUI de MQL5 con funciones dinámicas puede mejorar significativamente la experiencia comercial de los usuarios. Al incorporar elementos interactivos, efectos de desplazamiento y actualizaciones de datos en tiempo real, el panel se convierte en una herramienta poderosa para los traders modernos.

Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA
Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.

Creación de un EA limitador de reducción diaria en MQL5
El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.

Cómo usar la API de datos JSON en sus proyectos MQL
Imagina que puedes utilizar datos que no se encuentran en MetaTrader, solo obtienes datos de los indicadores mediante análisis de precios y análisis técnico. Ahora imagina que puedes acceder a datos que aumentarán tu poder comercial. Puede multiplicar la potencia del software MetaTrader si combina la salida de otro software, métodos de análisis macro y herramientas ultra avanzadas a través de los datos de la API. En este artículo, le enseñaremos cómo utilizar las API y le presentaremos servicios de datos API útiles y valiosos.

Redes neuronales: así de sencillo (Parte 90): Interpolación frecuencial de series temporales (FITS)
Al estudiar el método FEDformer, abrimos la puerta al dominio frecuencial de la representación de series temporales. En este nuevo artículo continuaremos con el tema iniciado, y analizaremos un método que permite no solo el análisis, sino también la predicción de estados posteriores en el ámbito privado.

Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python
En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.

Cómo crear cualquier tipo de Trailing Stop y conectarlo a un asesor experto
En este artículo, veremos las clases necesarias para crear fácilmente varios trailings. Asimismo, aprenderemos cómo conectar un trailing stop a cualquier EA.

Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)
Todos los modelos de los que hemos hablado anteriormente analizan el estado del entorno como una secuencia temporal. Sin embargo, las propias series temporales también pueden representarse como características de frecuencia. En este artículo, presentaremos un algoritmo que utiliza las características de frecuencia de una secuencia temporal para predecir los estados futuros.

Gestor de riesgos para el trading algorítmico
Los objetivos de este artículo son: demostrar por qué el uso del gestor de riesgos es algo imprescindible, adaptar los principios del riesgo controlado en el trading algorítmico en una clase aparte, de modo que todo el mundo pueda comprobar de forma independiente la eficacia del enfoque de racionamiento del riesgo en el trading intradía y la inversión en los mercados financieros. En este artículo, detallaremos la escritura de una clase de gestor de riesgos para el trading algorítmico como continuación del artículo anterior sobre la escritura de un gestor de riesgos para el trading manual.

Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 1): Creación del panel
Este artículo explora los pasos fundamentales en la elaboración e implementación de un panel de Interfaz Gráfica de Usuario (GUI) utilizando MetaQuotes Language 5 (MQL5). Los paneles de utilidades personalizados mejoran la interacción del usuario en la negociación simplificando las tareas habituales y visualizando la información esencial de la negociación. Al crear paneles personalizados, los operadores pueden agilizar su flujo de trabajo y ahorrar tiempo durante las operaciones.

Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)
El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales
La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.

Dominar la dinámica del mercado: Crear un asesor experto (EA) de soportes y resistencias
Una guía completa para desarrollar un algoritmo de trading automatizado basado en la estrategia de soportes y resistencias. Información detallada sobre todos los aspectos de la creación de un asesor experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.

Redes neuronales: así de sencillo (Parte 86): Transformador en U
Continuamos nuestro repaso a los algoritmos de previsión de series temporales. En este artículo nos familiarizaremos con los métodos del Transformador en U.

Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios
En este artículo analizaremos el método de componentes principales, una técnica de reducción de la dimensionalidad para el análisis de datos, y cómo podemos aplicar este utilizando valores propios y vectores. Como siempre, intentaremos desarrollar un prototipo de la clase de señales del asesor experto que se pueda utilizar en el Wizard MQL5.

Desarrollando la estrategia martingala Zone Recovery en MQL5
El artículo analiza, en una perspectiva detallada, los pasos que deben implementarse para la creación de un asesor experto basado en el algoritmo comercial Zone Recovery. Esto ayuda a automatizar el sistema ahorrando tiempo a los algotraders.

Creación de un modelo de restricción de tendencia de velas (Parte 4): Personalización del estilo de visualización para cada onda de tendencias
En este artículo, exploraremos las capacidades del poderoso lenguaje MQL5 para dibujar varios estilos de indicadores en MetaTrader 5. También veremos los scripts y cómo pueden utilizarse en nuestro modelo.

Guía paso a paso para operar con la estrategia de ruptura de estructura (BoS, Break of Structure)
Una guía completa para desarrollar un algoritmo de trading automatizado basado en la estrategia de ruptura de estructura (BoS, Break of Structure). Información detallada sobre todos los aspectos de la creación de un asesor en MQL5 y su prueba en MetaTrader 5, desde el análisis de soportes y resistencias de precios, hasta la gestión de riesgos.