Artículos con ejemplos de programación de robots comerciales en el lenguaje MQL5

icon

En el ámbito del trading automático los Asesores Expertos es la cima de la programación y objetivo deseable de cada desarrollador. Usted puede escribir su propio Asesor Experto utilizando los artículos de esta sección. Paso a paso los principiantes podrán pasar todas las fases de creación, depuración y simulación de los sistemas automáticos de trading.

Los artículos no sólo enseñarán a programar en el lenguaje MQL5, sino mostrarán cómo implementar cualquier idea y técnica comercial. Usted conocerá cómo programar el Trailing Stop, cómo realizar la gestión del capital, cómo obtener el valor del indicador y muchas cosas más.

Nuevo artículo
últimas | mejores
preview
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
preview
Desarrollo de asesores expertos autooptimizantes en MQL5

Desarrollo de asesores expertos autooptimizantes en MQL5

Construya asesores expertos que miren hacia delante y se ajusten a cualquier mercado.
preview
Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias puede ser complicado y abrumador, en este artículo repasaremos los pasos para obtener datos de noticias. Además, conoceremos el calendario económico de MQL5 y lo que ofrece.
preview
Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Embárquese en la siguiente fase de nuestro viaje MQL5. En este artículo para principiantes analizaremos el resto de funciones de la matriz y desmitificaremos conceptos complejos para que pueda elaborar estrategias de negociación eficaces. Hablaremos de ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse y ArraySort. Aumente su experiencia en negociación algorítmica con estas funciones de matriz esenciales. ¡Únase a nosotros en el camino hacia el dominio de MQL5!
preview
Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

En nuestros modelos, a menudo utilizamos varios algoritmos de atención. Y, probablemente, lo más frecuente es utilizar transformadores. Su principal desventaja es la necesidad de recursos. En este artículo, estudiaremos un nuevo algoritmo que puede ayudar a reducir los costes informáticos sin perder calidad.
preview
Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer

Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer

Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.
preview
Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5

Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5

En este artículo, discutiremos cómo utilizar el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza para analizar el comportamiento de las series de precios en MQL5.
preview
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
preview
Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo

Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo

En esta serie, seguiremos desvelando los secretos de la programación. En nuestro nuevo artículo, aprenderemos los fundamentos de las estructuras, las clases y las funciones de tiempo y adquiriremos nuevas habilidades para lograr una programación eficiente. Esta guía será probablemente útil no solo para los principiantes, sino también para los desarrolladores experimentados, ya que simplifica conceptos complejos, ofreciendo información valiosa para dominar MQL5. Así que hoy podrá seguir aprendiendo cosas nuevas, mejorando sus conocimientos de programación y dominando el mundo del trading algorítmico.
preview
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Ya hemos avanzado bastante en el desarrollo del asesor multidivisa con varias estrategias funcionando en paralelo. Basándonos en nuestra experiencia, revisaremos la arquitectura de nuestra solución y trataremos de mejorarla antes de avanzar demasiado.
preview
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
preview
Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

El proyecto consiste en utilizar Python para realizar previsiones basadas en el aprendizaje profundo en los mercados financieros. Exploraremos los entresijos de la comprobación del rendimiento del modelo utilizando métricas clave como el error medio absoluto (MAE, Mean Absolute Error), el error medio cuadrático (MSE, Mean Squared Error) y R-cuadrado (R2), y aprenderemos a envolverlo todo en un ejecutable. También haremos un fichero modelo ONNX con su EA.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.
preview
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.
preview
Trailing stop en el trading

Trailing stop en el trading

En este artículo, analizaremos el uso del trailing stop en el trading: su utilidad y eficacia, y cómo podemos utilizarlo. La eficacia de un trailing stop depende en gran medida de la volatilidad del precio y de la selección del nivel de stop loss. Para fijar un stop loss pueden usarse diversos métodos.
preview
Creación de un algoritmo de creación de mercado en MQL5

Creación de un algoritmo de creación de mercado en MQL5

¿Cómo funcionan los creadores de mercado? Consideremos esta cuestión y creemos un algoritmo primitivo de creación de mercado.
preview
Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5

Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5

En este artículo, seguiremos estudiando los fundamentos de la programación MQL5. Hoy veremos los arrays, las funciones definidas por el usuario, los preprocesadores y el procesamiento de eventos. Para una mayor claridad, todos los pasos de cada explicación irán acompañado de un código. Esta serie de artículos sienta las bases para el aprendizaje de MQL5, prestando especial atención a la explicación de cada línea de código.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Existen bastantes estrategias comerciales distintas. Para diversificar los riesgos y aumentar la estabilidad de los resultados comerciales, puede resultar útil utilizar varias estrategias que funcionen en paralelo. Pero si cada estrategia se implementa como un asesor independiente, se hace mucho más difícil gestionar su trabajo conjunto en una cuenta comercial. Para resolver este problema, es deseable implementar el funcionamiento de diferentes estrategias de negociación en un asesor.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 6): Dos indicadores RSI se cruzan entre sí

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 6): Dos indicadores RSI se cruzan entre sí

Por asesor multidivisa en este artículo nos referimos a un asesor o robot comercial que utiliza dos indicadores RSI con líneas de intersección: un RSI rápido que se cruza con uno lento.
preview
Aprendiendo MQL5 de principiante a profesional (Parte II): Tipos de datos básicos y uso de variables

Aprendiendo MQL5 de principiante a profesional (Parte II): Tipos de datos básicos y uso de variables

Continuamos la serie para principiantes. Hoy veremos cómo crear constantes y variables, además de registrar la fecha, los colores y otros datos útiles. Asimismo, aprenderemos a crear enumeraciones como días de la semana o estilos de cadena (sólido, punteado, etc.). Las variables y las expresiones son la base de la programación: se encuentran necesariamente en el 99% de los programas, por lo que comprenderlas es fundamental. Y así, si es usted nuevo en el mundo de la programación, este es un buen comienzo. Nivel de conocimientos de programación: muy básico, dentro del ámbito de mi artículo anterior (el enlace está al principio).
preview
Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

En trabajos anteriores, hemos introducido el método del Decision Transformer y varios algoritmos derivados de él. Asimismo, hemos experimentado con distintos métodos de fijación de objetivos. Durante los experimentos, hemos trabajado con distintas formas de fijar objetivos, pero el aprendizaje de la trayectoria ya recorrida por parte del modelo siempre quedaba fuera de nuestra atención. En este artículo, queremos presentar un método que llenará este vacío.
preview
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.
preview
Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

Redes neuronales: así de sencillo (Parte 69): Restricción de la política de comportamiento basada en la densidad de datos offline (SPOT)

En el aprendizaje offline, utilizamos un conjunto de datos fijo, lo que limita la cobertura de la diversidad del entorno. Durante el proceso de aprendizaje, nuestro Agente puede generar acciones fuera de dicho conjunto. Si no hay retroalimentación del entorno, la corrección de las evaluaciones de tales acciones será cuestionable. Mantener la política del Agente dentro de la muestra de entrenamiento se convierte así en un aspecto importante para garantizar la solidez del entrenamiento. De eso hablaremos en este artículo.
preview
Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias

Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias

Desde los primeros artículos sobre el aprendizaje por refuerzo, hemos tocado de un modo u otro dos problemas: la exploración del entorno y la definición de la función de recompensa. Los artículos más recientes se han centrado en el problema de la exploración en el aprendizaje offline. En este artículo, queremos presentar un algoritmo cuyos autores han abandonado por completo la función de recompensa.
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte I): Creamos un sencillo asesor de cobertura

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte I): Creamos un sencillo asesor de cobertura

Hoy crearemos un sencillo asesor de cobertura como base para nuestro asesor Grid-Hedge más avanzado, que será una mezcla de estrategias de rejilla y cobertura clásicas. Al final de este artículo, usted sabrá cómo crear una estrategia de cobertura simple y lo que la gente opina sobre la rentabilidad de esta estrategia.
preview
Paradigmas de programación (Parte 1): Enfoque procedimental para el desarrollo de un asesor basado en la dinámica de precios

Paradigmas de programación (Parte 1): Enfoque procedimental para el desarrollo de un asesor basado en la dinámica de precios

Conozca los paradigmas de programación y su aplicación en el código MQL5. En este artículo, analizaremos las características de la programación procedimental y ofreceremos ejemplos prácticos. Asimismo, aprenderemos a desarrollar un asesor basado en la acción del precio (Action Price) utilizando el indicador EMA y datos de velas. Además, el artículo introduce el paradigma de la programación funcional.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 5): Bandas de Bollinger en el Canal de Keltner - Señales de Indicador

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 5): Bandas de Bollinger en el Canal de Keltner - Señales de Indicador

En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. En este artículo, usaremos las señales de dos indicadores, las Bandas de Bollinger® y el Canal de Keltner.
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
preview
Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.
preview
Aprendiendo MQL5 de principiante a profesional (Parte I): Comenzamos a programar

Aprendiendo MQL5 de principiante a profesional (Parte I): Comenzamos a programar

Este artículo supone la introducción a toda una serie de artículos sobre programación. Partimos del supuesto de que el lector no se ha enfrentado nunca a la programación. Así que empezaremos por lo básico. Nivel de conocimientos de programación: principiante absoluto.
preview
Preparación de indicadores de símbolo/periodo múltiple

Preparación de indicadores de símbolo/periodo múltiple

En este artículo analizaremos los principios de la creación de los indicadores de símbolo/periodo múltiple y la obtención de datos de ellos en asesores e indicadores. Asimismo, veremos los principales matices de uso de los indicadores múltiples en asesores e indicadores, y su representación a través de los búferes del indicador personalizado.
preview
Indicadores alternativos de riesgo y rentabilidad en MQL5

Indicadores alternativos de riesgo y rentabilidad en MQL5

En este artículo, presentaremos una aplicación de varias medidas de rentabilidad y riesgo consideradas alternativas al ratio de Sharpe e investigaremos diferentes curvas de capital hipotéticas para analizar sus características.
preview
Plantillas listas para conectar indicadores en asesores (Parte 3): Indicadores de tendencia

Plantillas listas para conectar indicadores en asesores (Parte 3): Indicadores de tendencia

En este artículo de referencia, echaremos un vistazo a los indicadores estándar de la categoría de Indicadores de tendencia. Asimismo, crearemos plantillas listas para usar estos indicadores en asesores expertos: declaración y configuración de parámetros, inicialización y desinicialización de indicadores, y también obtención de datos y señales de los búferes de indicador en asesores.
preview
Estimamos la rentabilidad futura usando intervalos de confianza

Estimamos la rentabilidad futura usando intervalos de confianza

En este artículo, nos adentraremos en la aplicación de técnicas de bootstrapping como forma de evaluar la rentabilidad futura de una estrategia automatizada.
preview
Plantillas listas para conectar indicadores en asesores (Parte 2): Indicadores de volumen y Bill Williams

Plantillas listas para conectar indicadores en asesores (Parte 2): Indicadores de volumen y Bill Williams

En este artículo, veremos los indicadores estándar de la categoría de Volúmenes y los Indicadores de Bill Williams. Asimismo, crearemos plantillas listas para su uso en asesores: declaración y configuración de parámetros, inicialización y desinicialización de indicadores, y también obtención de datos y señales de los búferes de indicador en asesores.
preview
Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)

Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)

En este artículo, le presentaremos un interesante algoritmo que se basa en la intersección de los métodos de aprendizaje supervisado y por refuerzo.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Por asesor multidivisa en este artículo entendemos un asesor, o un robot comercial que puede operar (abrir/cerrar órdenes, gestionar órdenes como Trailing Stop Loss y Trailing Profit) con más de un par de símbolos desde un gráfico. Esta vez usaremos un solo indicador, a saber, la media móvil triangular en uno o varios marcos temporales.