Wie Smart-Money-Konzepte (SMC) zusammen mit dem Fibonacci-Indikator einen optimalen Handelseinstieg signalisieren.
SMC (Orderblock) sind Schlüsselbereiche, in denen institutionelle Händler umfangreiche Käufe oder Verkäufe tätigen. Nach einer signifikanten Kursbewegung hilft Fibonacci dabei, ein potenzielles Retracement von einem kürzlichen Swing-Hoch zu einem Swing-Tief zu identifizieren, um einen optimalen Handelseinstieg zu finden.
Neuronale Netze leicht gemacht (Teil 29): Der Algorithmus Advantage Actor Critic
In den vorangegangenen Artikeln dieser Reihe haben wir zwei Algorithmen des verstärkten Lernens (Reinforcement Learning) kennengelernt. Jede von ihnen hat seine eigenen Vor- und Nachteile. Wie so oft in solchen Fällen kommt man dann auf die Idee, beide Methoden in einem Algorithmus zu kombinieren und das Beste aus beiden zu verwenden. Dies würde die Unzulänglichkeiten eines jeden von ihnen ausgleichen. Eine dieser Methoden wird in diesem Artikel erörtert.
Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil 4): Verhaltensmuster 2
In diesem Artikel werden wir unsere Serie über das Thema Entwurfmuster abschließen. Wir haben erwähnt, dass es drei Arten von Entwurfmuster gibt: Erzeugungs-, Verhaltens- und strukturelle Muster. Wir werden die verbleibenden Muster des Verhaltenstyps vervollständigen, die dabei helfen können, die Methode der Interaktion zwischen Objekten so festzulegen, dass unser Code sauber wird.
Andere Klassen in der Bibliothek DoEasy (Teil 67): Objektklasse der Charts
In diesem Artikel werde ich die Objektklasse der Charts (das einzelne Chart eines Handelsinstruments) erstellen und die Kollektionsklasse von MQL5-Signalobjekten so verbessern, dass jedes in der Kollektion gespeicherte Signalobjekt alle seine Parameter beim Aktualisieren der Liste aktualisiert.
Erstellen eines EA, der automatisch funktioniert (Teil 07): Kontoarten (II)
Heute werden wir sehen, wie man einen Expert Advisor erstellt, der einfach und sicher im automatischen Modus arbeitet. Der Händler sollte sich immer darüber im Klaren sein, was der automatische EA tut, sodass er ihn im Falle einer „Entgleisung“ so schnell wie möglich aus dem Chart entfernen und die Kontrolle über die Situation übernehmen kann.
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe
In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst wird im nächsten Artikel implementiert).
Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie
Ein umfassender Leitfaden zur Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage einer Unterstützungs- und Widerstandsstrategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
Andere Klassen in der Bibliothek DoEasy (Teil 72): Kontrolle und Aufzeichnung der Parameter von Chart-Objekten in der Kollektion
In diesem Artikel werde ich die Arbeit mit den Klassen eines Chartobjekts und ihrer Kollektion vervollständigen. Ich werde auch die automatische Kontrolle von Änderungen Eigenschaften von Chartobjekten und ihren Fenstern implementieren, sowie das Speichern neuer Parameter in den Objekteigenschaften. Eine solche Überarbeitung ermöglicht die zukünftige Implementierung einer Ereignisfunktionalität für die gesamte Kollektion des Charts.
Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen
In diesem Artikel werde ich zwei Klassen erstellen (die Klassenobjekte des DOM-Schnappschusses und die der DOM-Schnappschuss-Reihe) und die Erstellung der DOM-Datenreihe testen.
Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert
Smart Money Concept (Break Of Structure) in Verbindung mit dem RSI-Indikator, um fundierte automatisierte Handelsentscheidungen auf der Grundlage der Marktstruktur zu treffen.
Neuronale Netze leicht gemacht (Teil 16): Praktische Anwendung des Clustering
Im vorigen Artikel haben wir eine Klasse für das Clustering von Daten erstellt. In diesem Artikel möchte ich Varianten für die mögliche Anwendung der gewonnenen Ergebnisse bei der Lösung praktischer Handelsaufgaben vorstellen.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)
In diesem Artikel werden wir das System zuverlässiger machen, um eine robuste und sichere Nutzung zu gewährleisten. Eine der Möglichkeiten, die gewünschte Robustheit zu erreichen, besteht darin, den Code so oft wie möglich wiederzuverwenden, damit er ständig in verschiedenen Fällen getestet wird. Aber das ist nur eine der Möglichkeiten. Eine andere Möglichkeit ist die Verwendung von OOP.
Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)
Automatisierung bedeutet nichts, wenn Sie den Zeitplan nicht kontrollieren können. Kein Arbeitnehmer kann effizient sein, wenn er 24 Stunden am Tag arbeitet. Viele sind jedoch der Meinung, dass ein automatisiertes System 24 Stunden am Tag funktionieren sollte. Aber es ist immer gut, eine Möglichkeit zu haben, einen Arbeitsbereich für den EA festzulegen. In diesem Artikel geht es darum, wie man einen solchen Zeitbereich richtig festlegt.
Modifizierter Grid-Hedge EA in MQL5 (Teil I): Erstellung eines einfachen Hedge EA
Wir werden einen einfachen Hedge EA als Basis für unseren fortgeschritteneren Grid-Hedge EA erstellen, der eine Mischung aus klassischen Grid- und klassischen Hedge-Strategien sein wird. Am Ende dieses Artikels werden Sie wissen, wie Sie eine einfache Hedge-Strategie erstellen können, und Sie werden auch erfahren, was die Leute darüber sagen, ob diese Strategie wirklich zu 100 % profitabel ist.
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
Neuronale Netze leicht gemacht (Teil 27): Tiefes Q-Learning (DQN)
Wir studieren weiterhin das Verstärkungslernen, das Reinforcement Learning. In diesem Artikel werden wir uns mit der Methode des Deep Q-Learning vertraut machen. Mit dieser Methode hat das DeepMind-Team ein Modell geschaffen, das einen Menschen beim Spielen von Atari-Computerspielen übertreffen kann. Ich denke, es wird nützlich sein, die Möglichkeiten der Technologie zur Lösung von Handelsproblemen zu bewerten.
Andere Klassen in der Bibliothek DoEasy (Teil 68): Die Chartfenster-Objektklasse und die Indikator-Objektklassen im Chartfenster
In diesem Artikel werde ich die Entwicklung der Chart-Objektklasse fortsetzen. Ich werde die Liste der Chart-Objekte hinzufügen, die Listen mit den verfügbaren Indikatoren hat.
Erstellen von Multi-Symbol- und Multi-Perioden-Indikatoren
In diesem Artikel werden wir uns mit den Grundsätzen der Erstellung von Multi-Symbol- und Multi-Perioden-Indikatoren befassen. Wir werden auch sehen, wie man auf die Daten solcher Indikatoren von Expert Advisors und anderen Indikatoren zugreifen kann. Wir werden die Hauptmerkmale der Verwendung von Multi-Indikatoren in Expert Advisors und Indikatoren besprechen und sehen, wie man sie durch nutzerdefinierte Indikatorpuffer darstellen kann.
Mehrere Indikatoren in einem Chart (Teil 06): Umwandlung des MetaTrader 5 in ein RAD-System (II)
In meinem letzten Artikel habe ich Ihnen gezeigt, wie man einen Chart Trade mit MetaTrader 5 Objekten erstellt und so die Plattform in ein RAD-System verwandelt. Das System funktioniert sehr gut, und sicher haben viele der Leser über die Erstellung einer Bibliothek nachgedacht, die es ermöglichen würde, die Funktionsweise des vorgeschlagenen Systems zu erweitern. Auf dieser Grundlage wäre es möglich, einen intuitiveren Expert Advisor mit einer schöneren und einfacher zu bedienenden Oberfläche zu entwickeln.
Aufbau und Test von Keltner-Kanal-Handelssystemen
In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.
Grafiken in der Bibliothek DoEasy (Teil 73): Das Formularobjekt eines grafischen Elements
Der Artikel erschließt einen neuen großen Bereich der Bibliothek für die Arbeit mit Grafiken. Im aktuellen Artikel werde ich das Mausstatusobjekt, das Basisobjekt aller grafischen Elemente und die Klasse des Formularobjekts der Bibliothek grafische Elemente erstellen.
Datenwissenschaft und maschinelles Lernen (Teil 02): Logistische Regression
Die Klassifizierung von Daten ist für einen Algo-Händler und einen Programmierer von entscheidender Bedeutung. In diesem Artikel werden wir uns auf einen logistischen Klassifizierungsalgorithmus konzentrieren, der uns wahrscheinlich helfen kann, die Ja- oder Nein-Stimmen, die Höhen und Tiefen, Käufe und Verkäufe zu identifizieren.
Datenkennzeichnung für Zeitreihenanalyse (Teil 2): Datensätze mit Trendmarkern mit Python erstellen
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Andere Klassen in der Bibliothek DoEasy (Teil 69): Kollektionsklasse der Chart-Objekte
Mit diesem Artikel beginne ich die Entwicklung der Kollektionsklasse der Chart-Objekt. Die Klasse wird die Kollektionsliste der Chart-Objekte mit ihren Unterfenstern und Indikatoren speichern und die Möglichkeit bieten, mit beliebigen ausgewählten Charts und ihren Unterfenstern oder mit einer Liste von mehreren Charts gleichzeitig zu arbeiten.
Datenwissenschaft und maschinelles Lernen (Teil 06): Gradientenverfahren
Der Gradientenverfahren spielt eine wichtige Rolle beim Training neuronaler Netze und vieler Algorithmen des maschinellen Lernens. Es handelt sich um einen schnellen und intelligenten Algorithmus, der trotz seiner beeindruckenden Arbeit von vielen Datenwissenschaftlern immer noch missverstanden wird - sehen wir uns an, worum es geht.
Anwendung von OLAP im Handel (Teil 4): Quantitative und visuelle Analyse der Testberichte
Der Artikel bietet grundlegende Werkzeuge für die OLAP-Analyse von Testberichten in Bezug auf einzelne Durchläufe und Optimierungsergebnisse. Das Werkzeug kann mit Dateien im Standardformat (tst und opt) arbeiten und bietet auch eine grafische Schnittstelle. MQL-Quellcodes sind unten angefügt.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 25): Herstellen eines robusten Systems (II)
In diesem Artikel werden wir den letzten Schritt zu einem schnellen EA machen. Machen Sie sich also auf eine längere Lektüre gefasst. Um unseren Expert Advisor zuverlässig zu machen, werden wir zunächst alles aus dem Code entfernen, was nicht Teil des Handelssystems ist.
Lernen Sie, wie man ein Handelssystem mit dem Awesome Oscillator entwickelt
In diesem neuen Artikel unserer Serie werden wir ein neues technisches Instrument kennenlernen, das für unseren Handel nützlich sein kann: den Indikator Awesome Oscillator (AO). Wir werden lernen, wie man mit diesem Indikator ein Handelssystem entwickeln kann.
Neuronale Netze leicht gemacht (Teil 14): Datenclustering
Es ist mehr als ein Jahr her, dass ich meinen letzten Artikel veröffentlicht habe. Das ist eine ganze Menge Zeit, um Ideen zu überarbeiten und neue Ansätze zu entwickeln. In dem neuen Artikel möchte ich von der bisher verwendeten Methode des überwachten Lernens abweichen. Diesmal werden wir uns mit Algorithmen des unüberwachten Lernens beschäftigen. Wir werden insbesondere einen der Clustering-Algorithmen - K-Means - betrachten.
Erstellen eines EA, der automatisch funktioniert (Teil 14): Automatisierung (VI)
In diesem Artikel werden wir das gesamte Wissen aus dieser Serie in die Praxis umsetzen. Wir werden endlich ein 100%ig automatisiertes und funktionierendes System aufbauen. Aber vorher müssen wir noch ein letztes Detail klären.
Aufbau und Test des Handelssystems Aroon
In diesem Artikel erfahren wir, wie wir ein Aroon-Handelssystem aufbauen können, nachdem wir die Grundlagen der Indikatoren und die erforderlichen Schritte zum Aufbau eines Handelssystems auf der Grundlage des Aroon-Indikators gelernt haben. Nachdem wir dieses Handelssystem aufgebaut haben, werden wir es testen, um zu sehen, ob es profitabel sein kann oder noch optimiert werden muss.
Verbessern Sie Ihre Handelscharts durch interaktiven GUI's in MQL5 (Teil II): Ein bewegliches GUI (II)
Erschließen Sie das Potenzial der dynamischen Datendarstellung in Ihren Handelsstrategien und Dienstprogrammen mit unserer ausführlichen Anleitung zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in die grundlegenden Prinzipien der objektorientierten Programmierung und entdecken Sie, wie Sie mit Leichtigkeit und Effizienz einzelne oder mehrere bewegliche GUIs auf demselben Diagramm entwerfen und implementieren können.
Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage
In Fortführung des Themas des vorangegangenen Artikels habe ich mich entschlossen, eine flexiblere und funktionellere Vorlage zu erstellen, die über größere Möglichkeiten verfügt und sowohl in der Freiberuflichkeit als auch als Basis für die Entwicklung von Mehrwährungs- und Mehrperioden-EAs mit der Fähigkeit zur Integration mit externen Lösungen effektiv genutzt werden kann.
Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 1): Die bereitgestellte Hardware und Umgebung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)
Im letzten Artikel haben wir uns mit dem Algorithmus des Autoencoders vertraut gemacht. Wie jeder andere Algorithmus hat auch dieser seine Vor- und Nachteile. In seiner ursprünglichen Implementierung wird der Autoencoder verwendet, um die Objekte so weit wie möglich von der Trainingsstichprobe zu trennen. Dieses Mal werden wir darüber sprechen, wie man mit einigen ihrer Nachteile umgehen kann.
Lernen Sie, wie man ein Handelssystem mit dem Accelerator Oscillator entwickelt
Ein neuer Artikel aus unserer Serie über die Erstellung einfacher Handelssysteme anhand der beliebtesten technischen Indikatoren. Wir werden einen neuen Indikator kennenlernen, den Accelerator Oscillator, und wir werden lernen, wie man ein Handelssystem mit ihm entwickelt.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 20): Neues Auftragssystem (III)
Wir arbeiten weiter an der Umsetzung des neuen Auftragssystems. Die Erstellung eines solchen Systems erfordert eine gute Beherrschung von MQL5 sowie ein Verständnis dafür, wie die MetaTrader 5-Plattform tatsächlich funktioniert und welche Ressourcen sie bietet.
Einführung in MQL5 (Teil 8): Leitfaden für Einsteiger zur Erstellung von Expert Advisors (II)
Dieser Artikel behandelt häufige Anfängerfragen aus MQL5-Foren und zeigt praktische Lösungen auf. Lernen Sie, grundlegende Aufgaben wie Kaufen und Verkaufen, die Kursabfrage der Kerzen und die Verwaltung automatisierter Handelsaspekte wie Handelslimits, Handelszeiträume und Gewinn-/Verlustschwellen durchzuführen. Erhalten Sie eine schrittweise Anleitung, um Ihr Verständnis und Ihre Implementierung dieser Konzepte in MQL5 zu verbessern.
Verwendung des JSON Data APIs in Ihren MQL-Projekten
Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.
Datenwissenschaft und maschinelles Lernen (Teil 04): Vorhersage des aktuellen Börsenkrachs
In diesem Artikel werde ich versuchen, unser logistisches Modell zu verwenden, um den Börsencrash auf der Grundlage der Fundamentaldaten der US-Wirtschaft vorherzusagen. NETFLIX und APPLE sind die Aktien, auf die wir uns konzentrieren werden, wobei wir die früheren Börsencrashs von 2019 und 2020 nutzen werden, um zu sehen, wie unser Modell in der aktuellen Krise abschneiden wird.