
Neuronale Netze leicht gemacht (Teil 92): Adaptive Vorhersage im Frequenz- und Zeitbereich
Die Autoren der FreDF-Methode haben den Vorteil der kombinierten Vorhersage im Frequenz- und Zeitbereich experimentell bestätigt. Die Verwendung von gewichteten Hyperparameter ist jedoch für nicht-stationäre Zeitreihen nicht optimal. In diesem Artikel werden wir uns mit der Methode der adaptiven Kombination von Vorhersagen im Frequenz- und Zeitbereich vertraut machen.

Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation
Der dynamische Multi-Pair Expert Advisor nutzt sowohl Korrelations- als auch inverse Korrelationsstrategien zur Optimierung der Handelsperformance. Durch die Analyse von Echtzeit-Marktdaten werden die Beziehungen zwischen Währungspaaren identifiziert und genutzt.

Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 6): Responsive Inline-Schaltflächen hinzufügen
In diesem Artikel integrieren wir interaktive Inline-Buttons in einen MQL5 Expert Advisor, die eine Echtzeitsteuerung über Telegram ermöglichen. Jeder Tastendruck löst bestimmte Aktionen aus und sendet Antworten an den Nutzer zurück. Außerdem modularisieren wir Funktionen zur effizienten Handhabung von Telegram-Nachrichten und Callback-Abfragen.

Kategorientheorie in MQL5 (Teil 8): Monoide
Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier führen wir Monoide als Bereich (Menge) ein, der die Kategorientheorie von anderen Datenklassifizierungsmethoden abhebt, indem er Regeln und ein Identitätselement enthält.

Neuronale Netze leicht gemacht (Teil 70): Operatoren der Closed-Form Policy Improvement (CFPI)
In diesem Artikel werden wir uns mit einem Algorithmus vertraut machen, der geschlossene Operatoren zur Verbesserung der Politik verwendet, um die Aktionen des Agenten im Offline-Modus zu optimieren.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 12): Entwicklung eines Risikomanagers auf der Ebene des Eigenhandels
In dem EA, der hier entwickelt wird, haben wir bereits einen bestimmten Mechanismus zur Kontrolle des Drawdowns. Sie ist jedoch probabilistischer Natur, da sie auf den Ergebnissen von Tests mit historischen Preisdaten beruht. Daher kann der Drawdown manchmal die maximal erwarteten Werte übersteigen (wenn auch mit einer geringen Wahrscheinlichkeit). Versuchen wir, einen Mechanismus hinzuzufügen, der die garantierte Einhaltung der festgelegten Drawdown-Höhe gewährleistet.

Neuronale Netze im Handel: Eine komplexe Methode zur Vorhersage einer Trajektorie (Traj-LLM)
In diesem Artikel möchte ich Ihnen eine interessante Methode zur Vorhersage von Trajektorien vorstellen, die zur Lösung von Problemen im Bereich der autonomen Fahrzeugbewegungen entwickelt wurde. Die Autoren der Methode haben die besten Elemente verschiedener architektonischer Lösungen kombiniert.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator
Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.

Datenwissenschaft und maschinelles Lernen (Teil 21): Neuronale Netze entschlüsseln, Optimierungsalgorithmen entmystifiziert
Tauchen Sie ein in das Herz der neuronalen Netze, indem wir die Optimierungsalgorithmen, die innerhalb des neuronalen Netzes verwendet werden, entmystifizieren. In diesem Artikel erfahren Sie, mit welchen Schlüsseltechniken Sie das volle Potenzial neuronaler Netze ausschöpfen und Ihre Modelle zu neuen Höhen der Genauigkeit und Effizienz führen können.

Automatisieren von Handelsstrategien mit Parabolic SAR Trend Strategy in MQL5: Erstellung eines effektiven Expertenberaters
In diesem Artikel werden wir die Handelsstrategien mit der Parabolic SAR Strategie in MQL5 automatisieren: Erstellung eines effektiven Expertenberaters. Der EA wird auf der Grundlage der vom Parabolic SAR-Indikator identifizierten Trends Trades durchführen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 40): Parabolic SAR
Der parabolische Stop-and-Reversal (SAR) ist ein Indikator für Trendbestätigungs- und Trendbeendigungspunkte. Da er bei der Erkennung von Trends hinterherhinkt, bestand sein Hauptzweck in der Positionierung von nachlaufenden Stop-Losses für offene Positionen. Wir untersuchen jedoch, ob es tatsächlich als Expert Advisor-Signal verwendet werden kann, dank der nutzerdefinierten Signalklassen der vom Assistenten zusammengestellten Expert Advisors.

Neuronale Netze leicht gemacht (Teil 84): Umkehrbare Normalisierung (RevIN)
Wir wissen bereits, dass die Vorverarbeitung der Eingabedaten eine wichtige Rolle für die Stabilität der Modellbildung spielt. Für die Online-Verarbeitung von „rohen“ Eingabedaten verwenden wir häufig eine Batch-Normalisierungsschicht. Aber manchmal brauchen wir ein umgekehrtes Verfahren. In diesem Artikel wird einer der möglichen Ansätze zur Lösung dieses Problems erörtert.

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs(II)-LoRA-Tuning entwickeln und testen
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Erstellen eines Expert Advisor, der Telegram integriert (Teil 7): Befehlsanalyse für die Automatisierung von Indikatoren auf Charts
In diesem Artikel zeigen wir Ihnen, wie Sie Telegram-Befehle in MQL5 integrieren können, um das Hinzufügen von Indikatoren in Trading-Charts zu automatisieren. Wir behandeln den Prozess des Parsens von Nutzerbefehlen, deren Ausführung in MQL5 und das Testen des Systems, um einen reibungslosen indikatorbasierten Handel zu gewährleisten.

Wie man ein Handelsjournal mit MetaTrader und Google-Tabellen erstellt
Erstellen eines Handelsjournals mit MetaTrader und Google-Tabellen! Sie lernen, wie Sie Ihre Handelsdaten über HTTP POST synchronisieren und über HTTP-Anfragen abrufen können. Am Ende haben Sie ein Handelsjournal, das Ihnen hilft, Ihre Geschäfte effektiv und effizient zu überblicken.

Einführung in MQL5 (Teil 11): Eine Anleitung für Anfänger zur Arbeit mit integrierten Indikatoren in MQL5 (II)
Entdecken Sie, wie man einen Expert Advisor (EA) in MQL5 entwickelt, der mehrere Indikatoren wie RSI, MA und Stochastik-Oszillator verwendet, um versteckte steigende und fallende Divergenzen zu erkennen. Lernen Sie, ein effektives Risikomanagement zu implementieren und den Handel zu automatisieren - mit detaillierten Beispielen und vollständig kommentiertem Quellcode für Ausbildungszwecke!

Preisgesteuertes CGI-Modell: Erweiterte Datennachbearbeitung und Implementierung
In diesem Artikel befassen wir uns mit der Entwicklung eines vollständig anpassbaren Skripts für den Preisdatenexport mit MQL5, das einen neuen Fortschritt in der Simulation des CGI-Modells Price Man darstellt. Wir haben fortschrittliche Verfeinerungstechniken implementiert, um sicherzustellen, dass die Daten nutzerfreundlich und für Animationszwecke optimiert sind. Außerdem werden wir die Möglichkeiten von Blender 3D bei der effektiven Arbeit mit und der Visualisierung von Preisdaten kennenlernen und sein Potenzial für die Erstellung dynamischer und ansprechender Animationen demonstrieren.

Einführung in Connexus (Teil 1): Wie verwendet man die WebRequest-Funktion?
Dieser Artikel ist der Beginn einer Reihe von Entwicklungen für eine Bibliothek namens „Connexus“, die HTTP-Anfragen mit MQL5 erleichtern soll. Das Ziel dieses Projekts ist es, dem Endnutzer diese Möglichkeit zu bieten und zu zeigen, wie man diese Hilfsbibliothek verwendet. Ich wollte sie so einfach wie möglich gestalten, um das Studium zu erleichtern und die Möglichkeit für künftige Entwicklungen zu schaffen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 11): Number Walls
Number Walls oder Zahlenwände sind eine Variante der Linear Shift Back Registers, die Sequenzen auf ihre Vorhersagbarkeit hin überprüfen, indem sie auf Konvergenz prüfen. Wir sehen uns an, wie diese Ideen in MQL5 von Nutzen sein könnten.

Datenwissenschaft und ML (Teil 27): Convolutional Neural Networks (CNNs) in MetaTrader 5 Trading Bots — funktioniert das?
Faltende neuronale Netzwerke (Convolutional Neural Networks, CNN) sind für ihre Fähigkeiten bei der Erkennung von Mustern in Bildern und Videos bekannt und werden in den verschiedensten Bereichen eingesetzt. In diesem Artikel untersuchen wir das Potenzial von CNNs zur Erkennung wertvoller Muster auf den Finanzmärkten und zur Erzeugung effektiver Handelssignale für MetaTrader 5-Handelsroboter. Lassen Sie uns herausfinden, wie diese tiefgehende maschinelle Lerntechnik für intelligentere Handelsentscheidungen genutzt werden kann.

Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises
Im MQL5-Forum gibt es viele Beiträge, in denen um Hilfe bei der Berechnung der Steigung von Preisänderungen gebeten wird. In diesem Artikel wird eine Möglichkeit zur Berechnung des Winkels aufgezeigt, der sich aus den Kursveränderungen eines beliebigen Marktes ergibt, mit dem Sie handeln möchten. Außerdem werden wir die Frage beantworten, ob die Entwicklung dieser neuen Funktion den zusätzlichen Aufwand und die investierte Zeit wert ist. Wir werden untersuchen, ob die Steigung des Kurses die Genauigkeit unseres KI-Modells bei der Vorhersage des USDZAR-Paares auf dem M1 verbessern kann.

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 5): Variable Positionsgrößen
In den vorangegangenen Teilen konnte der in Entwicklung befindliche Expert Advisor (EA) nur eine feste Positionsgröße für den Handel verwenden. Dies ist für Testzwecke akzeptabel, aber für den Handel mit einem echten Konto nicht ratsam. Lassen Sie uns den Handel mit variablen Positionsgrößen ermöglichen.

Handel mit dem MQL5 Wirtschaftskalender (Teil 2): Erstellen eines News Dashboard Panels
In diesem Artikel erstellen wir ein praktisches Nachrichten-Dashboard-Panel mit dem MQL5-Wirtschaftskalender, um unsere Handelsstrategie zu verbessern. Wir beginnen mit der Gestaltung des Layouts und konzentrieren uns dabei auf Schlüsselelemente wie Ereignisnamen, Wichtigkeit und Zeitplanung, bevor wir mit der Einrichtung in MQL5 beginnen. Schließlich implementieren wir ein Filtersystem, das nur die relevantesten Nachrichten anzeigt und den Händlern einen schnellen Zugang zu wichtigen wirtschaftlichen Ereignissen ermöglicht.

Algorithmen zur Optimierung mit Populationen: Künstliche multisoziale Suchobjekte (MSO)
Dies ist eine Fortsetzung des vorangegangenen Artikels, der sich mit dem Konzept der sozialen Gruppen befasst. In dem Artikel wird die Entwicklung sozialer Gruppen anhand von Bewegungs- und Gedächtnisalgorithmen untersucht. Die Ergebnisse werden dazu beitragen, die Entwicklung sozialer Systeme zu verstehen und sie bei der Optimierung und Suche nach Lösungen anzuwenden.

Neuronale Netze im Handel: Einspeisung globaler Informationen in unabhängige Kanäle (InjectTST)
Die meisten modernen Methoden zur multimodalen Zeitreihenprognose verwenden den Ansatz unabhängiger Kanäle. Dabei wird die natürliche Abhängigkeit verschiedener Kanäle derselben Zeitreihe ignoriert. Der intelligente Einsatz zweier Ansätze (unabhängige und gemischte Kanäle) ist der Schlüssel zur Verbesserung der Leistung der Modelle.

Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)
In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 12): Das Newton-Polynom
Das Newtonsche Polynom, bei dem aus einer Reihe von Punkten quadratische Gleichungen erstellt werden, ist ein archaischer, aber interessanter Ansatz für die Betrachtung einer Zeitreihe. In diesem Artikel versuchen wir zu untersuchen, welche Aspekte dieses Konzept für Händler von Nutzen sein könnten, und gehen auch auf seine Grenzen ein.

Neuronale Netze leicht gemacht (Teil 86): U-förmiger Transformator
Wir untersuchen weiterhin Algorithmen für die Zeitreihenprognose. In diesem Artikel werden wir eine andere Methode besprechen: den U-förmigen Transformator.

Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen
In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 11): Automatisieren der Optimierung (erste Schritte)
Um einen guten EA zu erhalten, müssen wir mehrere gute Parametersätze von Handelsstrategie-Instanzen für ihn auswählen. Dies kann manuell erfolgen, indem die Optimierung für verschiedene Symbole durchgeführt und dann die besten Ergebnisse ausgewählt werden. Aber es ist besser, diese Arbeit an das Programm zu delegieren und sich produktiveren Tätigkeiten zu widmen.

Neuronale Netze leicht gemacht (Teil 94): Optimierung der Eingabereihenfolge
Wenn wir mit Zeitreihen arbeiten, verwenden wir die Quelldaten immer in ihrer historischen Reihenfolge. Aber ist das die beste Option? Es besteht die Meinung, dass eine Änderung der Reihenfolge der Eingabedaten die Effizienz der trainierten Modelle verbessern wird. In diesem Artikel lade ich Sie ein, sich mit einer der Methoden zur Optimierung der Eingabereihenfolge vertraut zu machen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 36): Q-Learning mit Markov-Ketten
Reinforcement Learning ist neben dem überwachten und dem unüberwachten Lernen eine der drei Hauptrichtungen des maschinellen Lernens. Es geht also um die optimale Steuerung oder das Erlernen der besten langfristigen Strategie, die der Zielfunktion am besten entspricht. Vor diesem Hintergrund untersuchen wir die mögliche Rolle, die ein MLP für den Lernprozess eines von einem Assistenten zusammengestellten Expertenberaters spielt.

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (II)
Denken wir über einen unabhängigen Expert Advisor nach. Zuvor haben wir einen indikatorbasierten Expert Advisor besprochen, der auch mit einem unabhängigen Skript zum Zeichnen der Risiko- und Ertragsgeometrie zusammenarbeitet. Heute werden wir die Architektur eines MQL5 Expert Advisors besprechen, der alle Funktionen in einem Programm integriert.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 34): Preiseinbettung mit einem unkonventionellen RBM
Restricted Boltzmann Machines sind eine Form von neuronalen Netzen, die Mitte der 1980er Jahre entwickelt wurde, als Rechenressourcen noch unerschwinglich waren. Zu Beginn stützte es sich auf Gibbs Sampling und kontrastive Divergenz, um die Dimensionalität zu reduzieren oder die verborgenen Wahrscheinlichkeiten/Eigenschaften über die eingegebenen Trainingsdatensätze zu erfassen. Wir untersuchen, wie Backpropagation eine ähnliche Leistung erbringen kann, wenn das RBM Preise für ein prognostizierendes Multi-Layer-Perceptron „embeds“ (einbettet).

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 44): Technischer Indikator Average True Range (ATR)
Der ATR-Oszillator ist ein sehr beliebter Indikator als Volatilitätsproxy, insbesondere auf den Devisenmärkten, auf denen es nur wenige Volumendaten gibt. Wir untersuchen dies auf der Basis von Mustern, wie wir es mit früheren Indikatoren getan haben, und teilen Strategien und Testberichte dank der MQL5-Assistentenbibliotheksklassen und -zusammenstellungen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten
Die Lernrate ist eine Schrittgröße in Richtung eines Trainingsziels in den Trainingsprozessen vieler maschineller Lernalgorithmen. Wir untersuchen die Auswirkungen, die die vielen Zeitpläne und Formate auf die Leistung eines Generative Adversarial Network haben können, eine Art neuronales Netz, das wir in einem früheren Artikel untersucht haben.

Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil III): Visa-Ausgabenindex
In der Welt der Big Data gibt es Millionen von alternativen Datensätzen, die das Potenzial haben, unsere Handelsstrategien zu verbessern. In dieser Artikelserie werden wir Ihnen helfen, die informativsten öffentlichen Datensätze zu finden.

Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage
In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil II): Verbesserte Reaktionsfähigkeit und schnelle Nachrichtenübermittlung
In diesem Artikel werden wir die Reaktionsfähigkeit des Admin Panels verbessern, das wir zuvor erstellt haben. Darüber hinaus werden wir die Bedeutung der schnellen Nachrichtenübermittlung im Zusammenhang mit Handelssignalen untersuchen.

Entwicklung eines Expert Advisors in MQL5 für Ausbrüche nach kalenderbasierten Nachrichtenereignissen
Die Volatilität erreicht ihren Höhepunkt in der Regel in der Nähe von Ereignissen mit hohem Nachrichtenwert, wodurch sich erhebliche Ausbruchschancen ergeben. In diesem Artikel werden wir den Umsetzungsprozess einer kalenderbasierten Ausbruch-Strategie skizzieren. Wir werden alles von der Erstellung einer Klasse zur Interpretation und Speicherung von Kalenderdaten über die Entwicklung realistischer Backtests mit diesen Daten bis hin zur Implementierung von Ausführungscode für den Live-Handel behandeln.