Artikel mit Beispielen für das Programmieren von Handelsrobotern in MQL5

icon

Expert Advisors gehören zum Höhepunkt des Programmierens und sind das gewünschte Ziel jeden Entwicklers im Bereich des automatischen Handels. Sie können auch einen eigenen Handelsroboter schreiben, wenn Sie die Artikel dieser Kategorie lesen und beschriebene Schritte durchführen. Sie werden lernen, wie automatische Handelssysteme erstellt und getestet werden.

Die Artikel lehren, nicht nur in MQL5 zu programmieren, sondern auch jegliche Handelsideen und Techniken umzusetzen. Sie erfahren, wie man Trailing-Stops programmiert, Geld verwaltet, Indikatorwerte erhält und vieles mehr.

Neuer Artikel
letzte | beste
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)

Heute werden wir uns mit der Verbesserung der Sicherheit für das derzeit in der Entwicklung befindliche Trading Administrator Panel befassen. Wir werden untersuchen, wie MQL5 in eine neue Sicherheitsstrategie implementiert werden kann, indem die Telegram-API für die Zwei-Faktor-Authentifizierung (2FA) verwendet wird. Diese Diskussion wird wertvolle Einblicke in die Anwendung von MQL5 bei der Verstärkung von Sicherheitsmaßnahmen liefern. Darüber hinaus werden wir die Funktion MathRand untersuchen, wobei wir uns auf ihre Funktionalität konzentrieren werden und darauf, wie sie innerhalb unseres Sicherheitsrahmens effektiv genutzt werden kann. Lesen Sie weiter, um mehr zu erfahren!
preview
Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 2): Reaktionsfähigkeit von Schaltflächen hinzufügen

Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 2): Reaktionsfähigkeit von Schaltflächen hinzufügen

In diesem Artikel konzentrieren wir uns darauf, unser statisches MQL5-Dashboard-Panel in ein interaktives Tool zu verwandeln, indem wir die Reaktionsfähigkeit von Schaltflächen aktivieren. Wir untersuchen, wie die Funktionalität der GUI-Komponenten automatisiert werden kann, um sicherzustellen, dass sie angemessen auf Nutzerklicks reagieren. Am Ende des Artikels haben wir eine dynamische Schnittstelle eingerichtet, die das Engagement der Nutzer und die Handelserfahrung verbessert.
preview
Erstellen eines MQL5 Expert Advisors basierend auf der Strategie „Daily Range Breakout“

Erstellen eines MQL5 Expert Advisors basierend auf der Strategie „Daily Range Breakout“

In diesem Artikel erstellen wir einen MQL5 Expert Advisor auf Basis der Daily Range Breakout Strategie. Wir behandeln die wichtigsten Konzepte der Strategie, entwerfen den EA-Blaupause, und implementieren die Breakout-Logik in MQL5. Schließlich werden Techniken für das Backtesting und die Optimierung des EA erforscht, um seine Effektivität zu maximieren.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 Teil IV: Login-Sicherheitsschicht

Erstellen eines Handelsadministrator-Panels in MQL5 Teil IV: Login-Sicherheitsschicht

Stellen Sie sich vor, ein bösartiger Akteur dringt in den Raum des Handelsadministrator ein und verschafft sich Zugang zu den Computern und dem Admin-Panel, über das Millionen von Händlern weltweit wertvolle Informationen erhalten. Ein solches Eindringen könnte katastrophale Folgen haben, z. B. das unbefugte Versenden irreführender Nachrichten oder zufällige Klicks auf Schaltflächen, die unbeabsichtigte Aktionen auslösen. In dieser Diskussion werden wir die Sicherheitsmaßnahmen in MQL5 und die neuen Sicherheitsfunktionen, die wir in unserem Admin-Panel zum Schutz vor diesen Bedrohungen implementiert haben, untersuchen. Durch die Verbesserung unserer Sicherheitsprotokolle wollen wir unsere Kommunikationskanäle schützen und das Vertrauen unserer weltweiten Handelsgemeinschaft erhalten. Weitere Informationen finden Sie in diesem Artikel.
preview
MQL5 Handels-Toolkit (Teil 3): Entwicklung einer EX5-Bibliothek zur Verwaltung schwebenden Aufträge

MQL5 Handels-Toolkit (Teil 3): Entwicklung einer EX5-Bibliothek zur Verwaltung schwebenden Aufträge

Lernen Sie, wie Sie eine umfassende EX5-Bibliothek für schwebende Aufträge in Ihrem MQL5-Code oder Ihren Projekten entwickeln und implementieren. Dieser Artikel zeigt Ihnen, wie Sie eine umfangreiche EX5-Bibliothek für die Verwaltung schwebender Aufträge erstellen können, und führt Sie durch den Import und die Implementierung dieser Bibliothek, indem er ein Handels-Panel oder eine grafische Nutzeroberfläche (GUI) erstellt. Das Expert Advisor-Order-Panel ermöglicht es den Nutzern, schwebende Aufträge, die mit einer bestimmten magischen Zahl verknüpft sind, direkt über die grafische Oberfläche im Chartfenster zu öffnen, zu überwachen und zu löschen.
preview
Klassische Strategien neu interpretieren (Teil X): Kann KI den MACD verbessern?

Klassische Strategien neu interpretieren (Teil X): Kann KI den MACD verbessern?

Begleiten Sie uns bei der empirischen Analyse des MACD-Indikators, um zu testen, ob die Anwendung von KI auf eine Strategie, die den Indikator mit einbezieht, unsere Prognosegenauigkeit für den EURUSD verbessern würde. Gleichzeitig haben wir geprüft, ob der Indikator selbst leichter vorhersagbar ist als der Preis, und ob der Wert des Indikators das künftige Preisniveau vorhersagt. Wir geben Ihnen die Informationen an die Hand, die Sie benötigen, um zu entscheiden, ob Sie Ihre Zeit in die Integration des MACD in Ihre AI-Handelsstrategien investieren sollten.
preview
Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung

Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung

Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.
preview
Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)

Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)

Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.
preview
Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 1): Einrichten des Panels

Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 1): Einrichten des Panels

In diesem Artikel erstellen wir ein interaktives Handels-Dashboard mit der Klasse Controls in MQL5, das zur Rationalisierung von Handelsvorgängen dient. Das Panel enthält einen Titel, Navigationsschaltflächen für Handel, Schließen und Informationen sowie spezielle Aktionsschaltflächen für die Ausführung von Geschäften und die Verwaltung von Positionen. Am Ende dieses Artikels werden Sie über ein Grundgerüst verfügen, das Sie in den nächsten Kapiteln weiter ausbauen können.
preview
Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen

Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen

Auf der Transformerarchitektur basierende Modelle weisen eine hohe Effizienz auf, aber ihre Verwendung wird durch hohe Ressourcenkosten sowohl in der Trainingsphase als auch während des Betriebs erschwert. In diesem Artikel schlage ich vor, sich mit Algorithmen vertraut zu machen, die es ermöglichen, den Speicherverbrauch solcher Modelle zu reduzieren.
preview
Neuronale Netze leicht gemacht (Teil 94): Optimierung der Eingabereihenfolge

Neuronale Netze leicht gemacht (Teil 94): Optimierung der Eingabereihenfolge

Wenn wir mit Zeitreihen arbeiten, verwenden wir die Quelldaten immer in ihrer historischen Reihenfolge. Aber ist das die beste Option? Es besteht die Meinung, dass eine Änderung der Reihenfolge der Eingabedaten die Effizienz der trainierten Modelle verbessern wird. In diesem Artikel lade ich Sie ein, sich mit einer der Methoden zur Optimierung der Eingabereihenfolge vertraut zu machen.
preview
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Erweiterung der installierten Klassen für die Theme-Verwaltung (II)

Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Erweiterung der installierten Klassen für die Theme-Verwaltung (II)

In dieser Diskussion werden wir die bestehende Dialogbibliothek sorgfältig erweitern, um die Logik der Verwaltung der Farbmodi (Theme) zu integrieren. Darüber hinaus werden wir Methoden für den Theme-Wechsel in die Klassen CDialog, CEdit und CButton integrieren, die in unserem Admin-Panel-Projekt verwendet werden. Lesen Sie weiter für weitere aufschlussreiche Perspektiven.
preview
Erstellen eines MQL5 Expert Advisors basierend auf der PIRANHA Strategie unter Verwendung von Bollinger Bändern

Erstellen eines MQL5 Expert Advisors basierend auf der PIRANHA Strategie unter Verwendung von Bollinger Bändern

In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, der auf der PIRANHA-Strategie basiert und Bollinger-Bänder zur Verbesserung der Handelseffektivität nutzt. Wir erörtern die Grundprinzipien der Strategie, die kodierte Umsetzung und die Methoden zur Prüfung und Optimierung. Dieses Wissen ermöglicht es Ihnen, den EA in Ihren Handelsszenarien effektiv einzusetzen
preview
Wie man ein Handelsjournal mit MetaTrader und Google-Tabellen erstellt

Wie man ein Handelsjournal mit MetaTrader und Google-Tabellen erstellt

Erstellen eines Handelsjournals mit MetaTrader und Google-Tabellen! Sie lernen, wie Sie Ihre Handelsdaten über HTTP POST synchronisieren und über HTTP-Anfragen abrufen können. Am Ende haben Sie ein Handelsjournal, das Ihnen hilft, Ihre Geschäfte effektiv und effizient zu überblicken.
preview
Beispiel eines neuen Indikators und eines Conditional LSTM

Beispiel eines neuen Indikators und eines Conditional LSTM

Dieser Artikel befasst sich mit der Entwicklung eines Expert Advisors (EA) für den automatisierten Handel, der technische Analyse mit Deep Learning-Vorhersagen kombiniert.
preview
Erstellen eines Expert Advisor, der Telegram integriert (Teil 7): Befehlsanalyse für die Automatisierung von Indikatoren auf Charts

Erstellen eines Expert Advisor, der Telegram integriert (Teil 7): Befehlsanalyse für die Automatisierung von Indikatoren auf Charts

In diesem Artikel zeigen wir Ihnen, wie Sie Telegram-Befehle in MQL5 integrieren können, um das Hinzufügen von Indikatoren in Trading-Charts zu automatisieren. Wir behandeln den Prozess des Parsens von Nutzerbefehlen, deren Ausführung in MQL5 und das Testen des Systems, um einen reibungslosen indikatorbasierten Handel zu gewährleisten.
preview
Vom Neuling zum Experten: Umfassende Fehlersuche in MQL5

Vom Neuling zum Experten: Umfassende Fehlersuche in MQL5

Die Problemlösung kann eine prägnante Routine für die Beherrschung komplexer Fertigkeiten, wie die Programmierung in MQL5, schaffen. Dieser Ansatz ermöglicht es Ihnen, sich auf die Lösung von Problemen zu konzentrieren und gleichzeitig Ihre Fähigkeiten zu entwickeln. Je mehr Probleme Sie lösen, desto mehr fortgeschrittenes Fachwissen erwerben Sie. Ich persönlich glaube, dass die Fehlersuche der effektivste Weg ist, das Programmieren zu beherrschen. Heute werden wir den Prozess der Codebereinigung durchgehen und die besten Techniken besprechen, um ein unordentliches Programm in ein sauberes, funktionales Programm zu verwandeln. Lesen Sie diesen Artikel und gewinnen Sie wertvolle Erkenntnisse.
preview
Neuronale Netze leicht gemacht (Teil 93): Adaptive Vorhersage im Frequenz- und Zeitbereich (letzter Teil)

Neuronale Netze leicht gemacht (Teil 93): Adaptive Vorhersage im Frequenz- und Zeitbereich (letzter Teil)

In diesem Artikel setzen wir die Umsetzung der Ansätze des ATFNet-Modells fort, das die Ergebnisse von 2 Blöcken (Frequenz und Zeit) innerhalb der Zeitreihenprognose adaptiv kombiniert.
preview
Scalping Orderflow für MQL5

Scalping Orderflow für MQL5

Dieser MetaTrader 5 Expert Advisor implementiert die Strategie für ein Scalping-OrderFlow mit fortschrittlichem Risikomanagement. Es verwendet mehrere technische Indikatoren, um Handelsmöglichkeiten auf der Grundlage von Ungleichgewichten im Auftragsfluss zu identifizieren. Das Backtesting zeigt die potenzielle Rentabilität, macht aber auch deutlich, dass weitere Optimierungen erforderlich sind, insbesondere beim Risikomanagement und beim Verhältnis der Handelsergebnisse. Es ist für erfahrene Händler geeignet und muss vor dem Live-Einsatz gründlich getestet und verstanden werden.
preview
Neuronale Netze leicht gemacht (Teil 92): Adaptive Vorhersage im Frequenz- und Zeitbereich

Neuronale Netze leicht gemacht (Teil 92): Adaptive Vorhersage im Frequenz- und Zeitbereich

Die Autoren der FreDF-Methode haben den Vorteil der kombinierten Vorhersage im Frequenz- und Zeitbereich experimentell bestätigt. Die Verwendung von gewichteten Hyperparameter ist jedoch für nicht-stationäre Zeitreihen nicht optimal. In diesem Artikel werden wir uns mit der Methode der adaptiven Kombination von Vorhersagen im Frequenz- und Zeitbereich vertraut machen.
preview
PSAR, Heiken Ashi und Deep Learning gemeinsam für den Handel nutzen

PSAR, Heiken Ashi und Deep Learning gemeinsam für den Handel nutzen

Dieses Projekt erforscht die Verschmelzung von Deep Learning und technischer Analyse, um Handelsstrategien im Forex-Bereich zu testen. Für schnelle Experimente wird ein Python-Skript verwendet, das ein ONNX-Modell neben traditionellen Indikatoren wie PSAR, SMA und RSI einsetzt, um die Entwicklung des EUR/USD vorherzusagen. Ein MetaTrader 5-Skript bringt diese Strategie dann in eine Live-Umgebung und nutzt historische Daten und technische Analysen, um fundierte Handelsentscheidungen zu treffen. Die Backtesting-Ergebnisse deuten auf einen vorsichtigen, aber konsequenten Ansatz hin, bei dem der Schwerpunkt eher auf Risikomanagement und stetigem Wachstum als auf aggressivem Gewinnstreben liegt.
preview
Wie man die automatische Optimierung in MQL5 Expert Advisors implementiert

Wie man die automatische Optimierung in MQL5 Expert Advisors implementiert

Schritt für Schritt Anleitung zur automatischen Optimierung in MQL5 für Expert Advisors. Wir werden eine robuste Optimierungslogik, bewährte Verfahren für die Parameterauswahl und die Rekonstruktion von Strategien mit Backtesting behandeln. Darüber hinaus werden übergeordnete Methoden wie die Walk-Forward-Optimierung erörtert, um Ihren Handelsansatz zu verbessern.
preview
Beispiel für CNA (Causality Network Analysis), SMOC (Stochastic Model Optimal Control) und Nash Game Theory mit Deep Learning

Beispiel für CNA (Causality Network Analysis), SMOC (Stochastic Model Optimal Control) und Nash Game Theory mit Deep Learning

Wir werden Deep Learning zu den drei Beispielen hinzufügen, die in früheren Artikeln veröffentlicht wurden, und die Ergebnisse mit den vorherigen vergleichen. Das Ziel ist es, zu lernen, wie man DL zu anderen EAs hinzufügt.
preview
Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 6): Responsive Inline-Schaltflächen hinzufügen

Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 6): Responsive Inline-Schaltflächen hinzufügen

In diesem Artikel integrieren wir interaktive Inline-Buttons in einen MQL5 Expert Advisor, die eine Echtzeitsteuerung über Telegram ermöglichen. Jeder Tastendruck löst bestimmte Aktionen aus und sendet Antworten an den Nutzer zurück. Außerdem modularisieren wir Funktionen zur effizienten Handhabung von Telegram-Nachrichten und Callback-Abfragen.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 5): Senden von Befehlen von Telegram an MQL5 und Empfangen von Antworten in Echtzeit

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 5): Senden von Befehlen von Telegram an MQL5 und Empfangen von Antworten in Echtzeit

In diesem Artikel erstellen wir mehrere Klassen, um die Echtzeitkommunikation zwischen MQL5 und Telegram zu erleichtern. Wir konzentrieren uns darauf, Befehle von Telegram abzurufen, sie zu entschlüsseln und zu interpretieren und entsprechende Antworten zurückzusenden. Am Ende stellen wir sicher, dass diese Interaktionen effektiv getestet werden und in der Handelsumgebung funktionieren.
preview
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)

Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)

In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
preview
Neuronale Netze leicht gemacht (Teil 90): Frequenzinterpolation von Zeitreihen (FITS)

Neuronale Netze leicht gemacht (Teil 90): Frequenzinterpolation von Zeitreihen (FITS)

Durch die Untersuchung der FEDformer-Methode haben wir die Tür zum Frequenzbereich der Zeitreihendarstellung geöffnet. In diesem neuen Artikel werden wir das begonnene Thema fortsetzen. Wir werden uns mit einer Methode befassen, mit der wir nicht nur eine Analyse durchführen, sondern auch spätere Zustände in einem bestimmten Bereich vorhersagen können.
preview
Nachrichtenhandel leicht gemacht (Teil 2): Risikomanagement

Nachrichtenhandel leicht gemacht (Teil 2): Risikomanagement

In diesem Artikel wird die Vererbung in unseren bisherigen und neuen Code eingeführt. Um die Effizienz zu erhöhen, wird ein neues Datenbankdesign eingeführt. Darüber hinaus wird eine Risikomanagementklasse eingerichtet, die sich mit der Berechnung des Volumens befasst.
preview
Neuronale Netze leicht gemacht (Teil 89): Transformer zur Frequenzzerlegung (FEDformer)

Neuronale Netze leicht gemacht (Teil 89): Transformer zur Frequenzzerlegung (FEDformer)

Alle Modelle, die wir bisher betrachtet haben, analysieren den Zustand der Umwelt als Zeitfolge. Die Zeitreihen können aber auch in Form von Häufigkeitsmerkmalen dargestellt werden. In diesem Artikel stelle ich Ihnen einen Algorithmus vor, der Frequenzkomponenten einer Zeitsequenz zur Vorhersage zukünftiger Zustände verwendet.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
preview
Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen

Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen

Dieser Artikel enthält eine umfassende Anleitung zur Implementierung eines ausgeklügelten Handelssystems unter Verwendung der Kausalitätsnetzwerkanalyse (Causality Network Analysis, CNA) und der Vektorautoregression (VAR) in MQL5. Es deckt den theoretischen Hintergrund dieser Methoden ab, bietet detaillierte Erklärungen der Schlüsselfunktionen im Handelsalgorithmus und enthält Beispielcode für die Implementierung.
preview
Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 3): Senden von Screenshots des Charts mit einer Legende von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 3): Senden von Screenshots des Charts mit einer Legende von MQL5 an Telegram

In diesem Artikel erstellen wir einen MQL5 Expert Advisor, der Chart-Screenshots als Bilddaten kodiert und sie über HTTP-Anfragen an einen Telegram-Chat sendet. Durch die Integration von Fotocodierung und -übertragung erweitern wir das bestehende MQL5-Telegram-System um visuelle Handelseinblicke direkt in Telegram.
preview
Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation

Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation

Der dynamische Multi-Pair Expert Advisor nutzt sowohl Korrelations- als auch inverse Korrelationsstrategien zur Optimierung der Handelsperformance. Durch die Analyse von Echtzeit-Marktdaten werden die Beziehungen zwischen Währungspaaren identifiziert und genutzt.
preview
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
preview
Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR

Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR

In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.
preview
Klassische Strategien neu interpretieren (Teil IV): SP500 und US-Staatsanleihen

Klassische Strategien neu interpretieren (Teil IV): SP500 und US-Staatsanleihen

In dieser Artikelserie analysieren wir klassische Handelsstrategien mit modernen Algorithmen, um festzustellen, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel greifen wir einen klassischen Ansatz für den Handel mit dem SP500 auf, indem wir seine Beziehung zu den US-Staatsanleihen nutzen.
preview
Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels

Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels

In diesem Artikel wird unser Nachrichtenhandelsexperte mit der Eröffnung von Handelsgeschäften auf der Grundlage des in unserer Datenbank gespeicherten Wirtschaftskalenders beginnen. Außerdem werden wir die Expertengrafiken verbessern, um mehr relevante Informationen über bevorstehende Wirtschaftsereignisse anzuzeigen.
preview
Wie man jede Art von Trailing-Stop entwickelt und mit einem EA verbindet

Wie man jede Art von Trailing-Stop entwickelt und mit einem EA verbindet

In diesem Artikel werden wir uns Klassen für die bequeme Erstellung verschiedener Trailing-Stops ansehen und lernen, wie man sie mit einem beliebigen EA verbindet.
preview
Neuronale Netze leicht gemacht (Teil 88): Zeitreihen-Dense-Encoder (TiDE)

Neuronale Netze leicht gemacht (Teil 88): Zeitreihen-Dense-Encoder (TiDE)

In dem Bestreben, möglichst genaue Prognosen zu erhalten, verkomplizieren die Forscher häufig die Prognosemodelle. Dies wiederum führt zu höheren Kosten für Training und Wartung der Modelle. Ist eine solche Erhöhung immer gerechtfertigt? In diesem Artikel wird ein Algorithmus vorgestellt, der die Einfachheit und Schnelligkeit linearer Modelle nutzt und Ergebnisse liefert, die mit den besten Modellen mit einer komplexeren Architektur vergleichbar sind.
preview
Risikomanager für den algorithmischen Handel

Risikomanager für den algorithmischen Handel

Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.