Neuronale Netze leicht gemacht (Teil 89): Transformer zur Frequenzzerlegung (FEDformer)
Alle Modelle, die wir bisher betrachtet haben, analysieren den Zustand der Umwelt als Zeitfolge. Die Zeitreihen können aber auch in Form von Häufigkeitsmerkmalen dargestellt werden. In diesem Artikel stelle ich Ihnen einen Algorithmus vor, der Frequenzkomponenten einer Zeitsequenz zur Vorhersage zukünftiger Zustände verwendet.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit
In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen
Dieser Artikel enthält eine umfassende Anleitung zur Implementierung eines ausgeklügelten Handelssystems unter Verwendung der Kausalitätsnetzwerkanalyse (Causality Network Analysis, CNA) und der Vektorautoregression (VAR) in MQL5. Es deckt den theoretischen Hintergrund dieser Methoden ab, bietet detaillierte Erklärungen der Schlüsselfunktionen im Handelsalgorithmus und enthält Beispielcode für die Implementierung.
Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 3): Senden von Screenshots des Charts mit einer Legende von MQL5 an Telegram
In diesem Artikel erstellen wir einen MQL5 Expert Advisor, der Chart-Screenshots als Bilddaten kodiert und sie über HTTP-Anfragen an einen Telegram-Chat sendet. Durch die Integration von Fotocodierung und -übertragung erweitern wir das bestehende MQL5-Telegram-System um visuelle Handelseinblicke direkt in Telegram.
Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation
Der dynamische Multi-Pair Expert Advisor nutzt sowohl Korrelations- als auch inverse Korrelationsstrategien zur Optimierung der Handelsperformance. Durch die Analyse von Echtzeit-Marktdaten werden die Beziehungen zwischen Währungspaaren identifiziert und genutzt.
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen
In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR
In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.
Klassische Strategien neu interpretieren (Teil IV): SP500 und US-Staatsanleihen
In dieser Artikelserie analysieren wir klassische Handelsstrategien mit modernen Algorithmen, um festzustellen, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel greifen wir einen klassischen Ansatz für den Handel mit dem SP500 auf, indem wir seine Beziehung zu den US-Staatsanleihen nutzen.
Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels
In diesem Artikel wird unser Nachrichtenhandelsexperte mit der Eröffnung von Handelsgeschäften auf der Grundlage des in unserer Datenbank gespeicherten Wirtschaftskalenders beginnen. Außerdem werden wir die Expertengrafiken verbessern, um mehr relevante Informationen über bevorstehende Wirtschaftsereignisse anzuzeigen.
Wie man jede Art von Trailing-Stop entwickelt und mit einem EA verbindet
In diesem Artikel werden wir uns Klassen für die bequeme Erstellung verschiedener Trailing-Stops ansehen und lernen, wie man sie mit einem beliebigen EA verbindet.
Neuronale Netze leicht gemacht (Teil 88): Zeitreihen-Dense-Encoder (TiDE)
In dem Bestreben, möglichst genaue Prognosen zu erhalten, verkomplizieren die Forscher häufig die Prognosemodelle. Dies wiederum führt zu höheren Kosten für Training und Wartung der Modelle. Ist eine solche Erhöhung immer gerechtfertigt? In diesem Artikel wird ein Algorithmus vorgestellt, der die Einfachheit und Schnelligkeit linearer Modelle nutzt und Ergebnisse liefert, die mit den besten Modellen mit einer komplexeren Architektur vergleichbar sind.
Risikomanager für den algorithmischen Handel
Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram
In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 1): Senden von Nachrichten von MQL5 an Telegram
In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, um mit einem Bot Nachrichten an Telegram zu senden. Wir richten die erforderlichen Parameter ein, einschließlich des API-Tokens und der Chat-ID des Bots, und führen dann eine HTTP-POST-Anforderung aus, um die Nachrichten zu übermitteln. Später kümmern wir uns um die Beantwortung der Fragen, um eine erfolgreiche Zustellung zu gewährleisten, und beheben alle Probleme, die im Falle eines Fehlers auftreten. Dies stellt sicher, dass wir Nachrichten von MQL5 an Telegram über den erstellten Bot senden.
Implementierung des Deus EA: Automatisierter Handel mit RSI und gleitenden Durchschnitten in MQL5
Dieser Artikel beschreibt die Schritte zur Implementierung des Deus EA, der auf den Indikatoren RSI und Gleitender Durchschnitt zur Steuerung des automatisierten Handels basiert.
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden
Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs
In dieser Artikelserie werden wir klassische Handelsstrategien empirisch analysieren, um zu sehen, ob wir sie mithilfe von KI verbessern können. In der heutigen Diskussion haben wir versucht, mithilfe des Modells der linearen Diskriminanzanalyse höhere Hochs und tiefere Tiefs vorherzusagen.
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze
Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
Ein Beispiel für automatisch optimierte Take-Profits und Indikatorparameter mit SMA und EMA
Dieser Artikel stellt einen hochentwickelten Expert Advisor für den Devisenhandel vor, der maschinelles Lernen mit technischer Analyse kombiniert. Es konzentriert sich auf den Handel mit Apple-Aktien und bietet adaptive Optimierung, Risikomanagement und mehrere Strategien. Das Backtesting zeigt vielversprechende Ergebnisse mit hoher Rentabilität, aber auch erheblichen Drawdowns, was auf Potenzial für eine weitere Verfeinerung hinweist.
Stimmungsanalyse auf Twitter mit Sockets
Dieser innovative Trading-Bot integriert MetaTrader 5 mit Python, um die Stimmungsanalyse sozialer Medien in Echtzeit für automatisierte Handelsentscheidungen zu nutzen. Durch die Analyse der Twitter-Stimmung in Bezug auf bestimmte Finanzinstrumente übersetzt der Bot Trends in den sozialen Medien in umsetzbare Handelssignale. Es nutzt eine Client-Server-Architektur mit Socket-Kommunikation, die eine nahtlose Interaktion zwischen den Handelsfunktionen von MT5 und der Datenverarbeitungsleistung von Python ermöglicht.
Erstellen eines Dashboards in MQL5 für den RSI-Indikator von mehreren Symbolen und Zeitrahmen
In diesem Artikel entwickeln wir ein dynamisches RSI-Indikator-Dashboard in MQL5, das Händlern Echtzeit-RSI-Werte für verschiedene Symbole und Zeitrahmen anzeigt. Das Dashboard bietet interaktive Schaltflächen, Echtzeit-Updates und farbkodierte Indikatoren, die Händlern helfen, fundierte Entscheidungen zu treffen.
Klassische Strategien neu interpretieren (Teil II): Bollinger-Bänder Ausbrüche
Dieser Artikel untersucht eine Handelsstrategie, die die lineare Diskriminanzanalyse (LDA) mit Bollinger-Bändern integriert und kategorische Zonenvorhersagen für strategische Markteinstiegssignale nutzt.
Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching
Die Vorhersage spielt eine wichtige Rolle in der Zeitreihenanalyse. Im neuen Artikel werden wir über die Vorteile des Zeitreihen-Patchings sprechen.
Neuronale Netze leicht gemacht (Teil 86): U-förmiger Transformator
Wir untersuchen weiterhin Algorithmen für die Zeitreihenprognose. In diesem Artikel werden wir eine andere Methode besprechen: den U-förmigen Transformator.
Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage
In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.
Neuronale Netze leicht gemacht (Teil 84): Umkehrbare Normalisierung (RevIN)
Wir wissen bereits, dass die Vorverarbeitung der Eingabedaten eine wichtige Rolle für die Stabilität der Modellbildung spielt. Für die Online-Verarbeitung von „rohen“ Eingabedaten verwenden wir häufig eine Batch-Normalisierungsschicht. Aber manchmal brauchen wir ein umgekehrtes Verfahren. In diesem Artikel wird einer der möglichen Ansätze zur Lösung dieses Problems erörtert.
Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation
In diesem Artikel wird der Conformer-Algorithmus vorgestellt, der ursprünglich für die Wettervorhersage entwickelt wurde, die in Bezug auf Variabilität und Launenhaftigkeit mit den Finanzmärkten verglichen werden kann. Conformer ist eine komplexe Methode. Es kombiniert die Vorteile von Aufmerksamkeitsmodellen und gewöhnlichen Differentialgleichungen.
Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)
In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.
Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5
Dieser Artikel beschreibt die Schritte zur Erstellung eines Expert Advisors (EA), der Kursausbrüche nach Konsolidierungsphasen ausnutzt. Durch die Identifizierung von Konsolidierungsbereichen und die Festlegung von Ausbruchsniveaus können Händler ihre Handelsentscheidungen auf der Grundlage dieser Strategie automatisieren. Der Expert Advisor zielt darauf ab, klare Einstiegs- und Ausstiegspunkte zu bieten und gleichzeitig falsche Ausbrüche zu vermeiden.
Einführung in MQL5 (Teil 8): Leitfaden für Einsteiger zur Erstellung von Expert Advisors (II)
Dieser Artikel behandelt häufige Anfängerfragen aus MQL5-Foren und zeigt praktische Lösungen auf. Lernen Sie, grundlegende Aufgaben wie Kaufen und Verkaufen, die Kursabfrage der Kerzen und die Verwaltung automatisierter Handelsaspekte wie Handelslimits, Handelszeiträume und Gewinn-/Verlustschwellen durchzuführen. Erhalten Sie eine schrittweise Anleitung, um Ihr Verständnis und Ihre Implementierung dieser Konzepte in MQL5 zu verbessern.
Kombinieren Sie fundamentale und technische Analysestrategien in MQL5 für Einsteiger
In diesem Artikel wird erörtert, wie sich Trendfolge- und Fundamentalprinzipien nahtlos in einen Expert Advisor integrieren lassen, um eine robustere Strategie zu entwickeln. In diesem Artikel wird gezeigt, wie einfach es für jedermann ist, mit MQL5 maßgeschneiderte Handelsalgorithmen zu erstellen und anzuwenden.
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit
Die Erweiterung des MQL5-GUI-Panels um dynamische Funktionen kann die Handelserfahrung für die Nutzer erheblich verbessern. Durch die Einbindung interaktiver Elemente, Hover-Effekte und Datenaktualisierungen in Echtzeit wird das Panel zu einem leistungsstarken Werkzeug für moderne Händler.
Handelsstrategie kaskadierender Aufträge basierend auf EMA Crossovers für MetaTrader 5
Der Artikel demonstriert einen automatisierten Algorithmus, der auf dem Kreuzen von EMAs für MetaTrader 5 basiert. Detaillierte Informationen zu allen Aspekten der Demonstration eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert
Smart Money Concept (Break Of Structure) in Verbindung mit dem RSI-Indikator, um fundierte automatisierte Handelsentscheidungen auf der Grundlage der Marktstruktur zu treffen.
Sentiment-Analyse und Deep Learning für den Handel mit EA und Backtesting mit Python
In diesem Artikel werden wir die Sentiment-Analyse und ONNX-Modelle mit Python vorstellen, die in einem EA verwendet werden können. Ein Skript führt ein trainiertes ONNX-Modell aus TensorFlow für Deep Learning-Vorhersagen aus, während ein anderes Nachrichtenschlagzeilen abruft und die Stimmung mithilfe von KI quantifiziert.
Erstellen eines täglichen Drawdown-Limits EA in MQL5
Der Artikel beschreibt detailliert, wie die Erstellung eines Expert Advisors (EA) auf der Grundlage des Handelsalgorithmus umgesetzt werden kann. Dies hilft, das System im MQL5 zu automatisieren und die Kontrolle über den Daily Drawdown zu übernehmen.
Verwendung des JSON Data APIs in Ihren MQL-Projekten
Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 1): Erstellen des Panels
In diesem Artikel werden die grundlegenden Schritte bei der Erstellung und Implementierung einer grafischen Nutzeroberfläche (GUI) mit MetaQuotes Language 5 (MQL5) erläutert. Nutzerdefinierte Utility-Panels verbessern die Nutzerinteraktion beim Handel, indem sie gängige Aufgaben vereinfachen und wichtige Handelsinformationen visualisieren. Durch die Erstellung nutzerdefinierter Panels können Händler ihre Arbeitsabläufe straffen und bei Handelsgeschäften Zeit sparen.
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)
In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)
In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.