Artikel mit Beispielen für das Programmieren von Handelsrobotern in MQL5

icon

Expert Advisors gehören zum Höhepunkt des Programmierens und sind das gewünschte Ziel jeden Entwicklers im Bereich des automatischen Handels. Sie können auch einen eigenen Handelsroboter schreiben, wenn Sie die Artikel dieser Kategorie lesen und beschriebene Schritte durchführen. Sie werden lernen, wie automatische Handelssysteme erstellt und getestet werden.

Die Artikel lehren, nicht nur in MQL5 zu programmieren, sondern auch jegliche Handelsideen und Techniken umzusetzen. Sie erfahren, wie man Trailing-Stops programmiert, Geld verwaltet, Indikatorwerte erhält und vieles mehr.

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.
preview
Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Dieser Artikel beschreibt die Schritte zur Erstellung eines Expert Advisors (EA), der Kursausbrüche nach Konsolidierungsphasen ausnutzt. Durch die Identifizierung von Konsolidierungsbereichen und die Festlegung von Ausbruchsniveaus können Händler ihre Handelsentscheidungen auf der Grundlage dieser Strategie automatisieren. Der Expert Advisor zielt darauf ab, klare Einstiegs- und Ausstiegspunkte zu bieten und gleichzeitig falsche Ausbrüche zu vermeiden.
preview
Einführung in MQL5 (Teil 8): Leitfaden für Einsteiger zur Erstellung von Expert Advisors (II)

Einführung in MQL5 (Teil 8): Leitfaden für Einsteiger zur Erstellung von Expert Advisors (II)

Dieser Artikel behandelt häufige Anfängerfragen aus MQL5-Foren und zeigt praktische Lösungen auf. Lernen Sie, grundlegende Aufgaben wie Kaufen und Verkaufen, die Kursabfrage der Kerzen und die Verwaltung automatisierter Handelsaspekte wie Handelslimits, Handelszeiträume und Gewinn-/Verlustschwellen durchzuführen. Erhalten Sie eine schrittweise Anleitung, um Ihr Verständnis und Ihre Implementierung dieser Konzepte in MQL5 zu verbessern.
preview
Kombinieren Sie fundamentale und technische Analysestrategien in MQL5 für Einsteiger

Kombinieren Sie fundamentale und technische Analysestrategien in MQL5 für Einsteiger

In diesem Artikel wird erörtert, wie sich Trendfolge- und Fundamentalprinzipien nahtlos in einen Expert Advisor integrieren lassen, um eine robustere Strategie zu entwickeln. In diesem Artikel wird gezeigt, wie einfach es für jedermann ist, mit MQL5 maßgeschneiderte Handelsalgorithmen zu erstellen und anzuwenden.
preview
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit

Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit

Die Erweiterung des MQL5-GUI-Panels um dynamische Funktionen kann die Handelserfahrung für die Nutzer erheblich verbessern. Durch die Einbindung interaktiver Elemente, Hover-Effekte und Datenaktualisierungen in Echtzeit wird das Panel zu einem leistungsstarken Werkzeug für moderne Händler.
preview
Handelsstrategie kaskadierender Aufträge basierend auf EMA Crossovers für MetaTrader 5

Handelsstrategie kaskadierender Aufträge basierend auf EMA Crossovers für MetaTrader 5

Der Artikel demonstriert einen automatisierten Algorithmus, der auf dem Kreuzen von EMAs für MetaTrader 5 basiert. Detaillierte Informationen zu allen Aspekten der Demonstration eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
preview
Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert

Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert

Smart Money Concept (Break Of Structure) in Verbindung mit dem RSI-Indikator, um fundierte automatisierte Handelsentscheidungen auf der Grundlage der Marktstruktur zu treffen.
preview
Sentiment-Analyse und Deep Learning für den Handel mit EA und Backtesting mit Python

Sentiment-Analyse und Deep Learning für den Handel mit EA und Backtesting mit Python

In diesem Artikel werden wir die Sentiment-Analyse und ONNX-Modelle mit Python vorstellen, die in einem EA verwendet werden können. Ein Skript führt ein trainiertes ONNX-Modell aus TensorFlow für Deep Learning-Vorhersagen aus, während ein anderes Nachrichtenschlagzeilen abruft und die Stimmung mithilfe von KI quantifiziert.
preview
Erstellen eines täglichen Drawdown-Limits EA in MQL5

Erstellen eines täglichen Drawdown-Limits EA in MQL5

Der Artikel beschreibt detailliert, wie die Erstellung eines Expert Advisors (EA) auf der Grundlage des Handelsalgorithmus umgesetzt werden kann. Dies hilft, das System im MQL5 zu automatisieren und die Kontrolle über den Daily Drawdown zu übernehmen.
preview
Verwendung des JSON Data APIs in Ihren MQL-Projekten

Verwendung des JSON Data APIs in Ihren MQL-Projekten

Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die ​API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.
preview
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 1): Erstellen des Panels

Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 1): Erstellen des Panels

In diesem Artikel werden die grundlegenden Schritte bei der Erstellung und Implementierung einer grafischen Nutzeroberfläche (GUI) mit MetaQuotes Language 5 (MQL5) erläutert. Nutzerdefinierte Utility-Panels verbessern die Nutzerinteraktion beim Handel, indem sie gängige Aufgaben vereinfachen und wichtige Handelsinformationen visualisieren. Durch die Erstellung nutzerdefinierter Panels können Händler ihre Arbeitsabläufe straffen und bei Handelsgeschäften Zeit sparen.
preview
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
preview
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.
preview
Praktische Entwicklung von Handelsstrategien

Praktische Entwicklung von Handelsstrategien

In diesem Artikel werden wir versuchen, unsere eigene Handelsstrategie zu entwickeln. Jede Handelsstrategie muss auf einer Art statistischem Vorteil beruhen. Außerdem sollte dieser Vorteil noch lange Zeit bestehen.
preview
Risikomanager für den manuellen Handel

Risikomanager für den manuellen Handel

In diesem Artikel wird detailliert beschrieben, wie man eine Risikomanager-Klasse für den manuellen Handel von Grund auf schreibt. Diese Klasse kann auch als Basisklasse für die Vererbung durch algorithmische Händler verwendet werden, die automatisierte Programme einsetzen.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 5): Variable Positionsgrößen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 5): Variable Positionsgrößen

In den vorangegangenen Teilen konnte der in Entwicklung befindliche Expert Advisor (EA) nur eine feste Positionsgröße für den Handel verwenden. Dies ist für Testzwecke akzeptabel, aber für den Handel mit einem echten Konto nicht ratsam. Lassen Sie uns den Handel mit variablen Positionsgrößen ermöglichen.
preview
Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie

Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie

Ein umfassender Leitfaden zur Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage einer Unterstützungs- und Widerstandsstrategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
preview
Entwicklung einer Zone Recovery Martingale Strategie in MQL5

Entwicklung einer Zone Recovery Martingale Strategie in MQL5

In diesem Artikel werden die Schritte, die für die Erstellung eines auf dem Zone Recovery-Handelsalgorithmus basierenden Expert Advisors erforderlich sind, ausführlich beschrieben. Dies hilft, das System zu automatisieren und spart den Algotradern Zeit.
preview
Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Im vorigen Artikel haben wir eine der Methoden zur Erkennung von Objekten in einem Bild kennengelernt. Die Verarbeitung eines statischen Bildes ist jedoch etwas anderes als die Arbeit mit dynamischen Zeitreihen, wie z. B. die Dynamik der von uns analysierten Preise. In diesem Artikel werden wir uns mit der Methode der Objekterkennung in Videos befassen, die dem Problem, das wir lösen wollen, etwas näher kommt.
preview
Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

In diesem Artikel schlage ich vor, das Thema der Entwicklung einer Handelsstrategie aus einem anderen Blickwinkel zu betrachten. Wir werden keine zukünftigen Kursbewegungen vorhersagen, sondern versuchen, ein Handelssystem auf der Grundlage der Analyse historischer Daten aufzubauen.
preview
Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage

Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage

In Fortführung des Themas des vorangegangenen Artikels habe ich mich entschlossen, eine flexiblere und funktionellere Vorlage zu erstellen, die über größere Möglichkeiten verfügt und sowohl in der Freiberuflichkeit als auch als Basis für die Entwicklung von Mehrwährungs- und Mehrperioden-EAs mit der Fähigkeit zur Integration mit externen Lösungen effektiv genutzt werden kann.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 4): Schwebende, virtuelle Aufträge und Speicherstatus

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 4): Schwebende, virtuelle Aufträge und Speicherstatus

Nachdem wir mit der Entwicklung eines Mehrwährungs-EAs begonnen haben, konnten wir bereits einige Ergebnisse erzielen und mehrere Iterationen zur Verbesserung des Codes durchführen. Unser EA war jedoch nicht in der Lage, mit schwebenden Aufträgen zu arbeiten und den Betrieb nach dem Neustart des Terminals wieder aufzunehmen. Fügen wir diese Funktionen hinzu.
preview
Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)

Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)

In unseren Modellen verwenden wir häufig verschiedene Aufmerksamkeitsalgorithmen. Und am häufigsten verwenden wir wahrscheinlich Transformers. Ihr größter Nachteil ist der Ressourcenbedarf. In diesem Artikel wird ein neuer Algorithmus vorgestellt, der dazu beitragen kann, die Rechenkosten ohne Qualitätseinbußen zu senken.
preview
Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Dieser Artikel setzt das Thema der Vorhersage der kommenden Kursentwicklung fort. Ich lade Sie ein, sich mit der Architektur eines Multi-Future Transformers vertraut zu machen. Die Hauptidee besteht darin, die multimodale Verteilung der Zukunft in mehrere unimodale Verteilungen zu zerlegen, was es ermöglicht, verschiedene Modelle der Interaktion zwischen Agenten auf der Szene effektiv zu simulieren.
preview
Neuronale Netze leicht gemacht (Teil 74): Trajektorienvorhersage mit Anpassung

Neuronale Netze leicht gemacht (Teil 74): Trajektorienvorhersage mit Anpassung

In diesem Artikel wird eine recht effektive Methode zur Vorhersage der Trajektorie von Multi-Agenten vorgestellt, die sich an verschiedene Umweltbedingungen anpassen kann.
preview
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
preview
Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Die Qualität der Vorhersage zukünftiger Zustände spielt eine wichtige Rolle bei der Methode des Goal-Conditioned Predictive Coding, die wir im vorherigen Artikel besprochen haben. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, der die Vorhersagequalität in stochastischen Umgebungen, wie z. B. den Finanzmärkten, erheblich verbessern kann.
preview
Eine Schritt-für-Schritt-Anleitung zum Handel mit der Break of Structure (BoS)-Strategie

Eine Schritt-für-Schritt-Anleitung zum Handel mit der Break of Structure (BoS)-Strategie

Ein umfassender Leitfaden für die Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage der Break of Structure (BoS)-Strategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Advisors in MQL5 und dessen Test in MetaTrader 5 - von der Analyse von Preisunterstützung und -widerstand bis hin zum Risikomanagement
preview
Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

In diesem Artikel werden wir einen Blick auf eine der berühmten Strategien von Bill Williams werfen, sie diskutieren und versuchen, die Strategie mit anderen Indikatoren und mit Vorhersagen zu verbessern.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 4): Anpassen des Anzeigestils für jede Trendwelle

Aufbau des Kerzenmodells Trend-Constraint (Teil 4): Anpassen des Anzeigestils für jede Trendwelle

In diesem Artikel werden wir die Möglichkeiten der leistungsstarken MQL5-Sprache beim Zeichnen verschiedener Indikatorstile in Meta Trader 5 untersuchen. Wir werden uns auch mit Skripten beschäftigen und wie sie in unserem Modell verwendet werden können.
preview
Trianguläre Arbitrage mit Vorhersagen

Trianguläre Arbitrage mit Vorhersagen

Dieser Artikel vereinfacht die Dreiecksarbitrage und zeigt Ihnen, wie Sie mit Hilfe von Prognosen und spezieller Software intelligenter mit Währungen handeln können, selbst wenn Sie neu auf dem Markt sind. Sind Sie bereit, mit Expertise zu handeln?
preview
Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Die Modelle, die wir erstellen, werden immer größer und komplexer. Dies erhöht nicht nur die Kosten für ihr Training, sondern auch für ihren Betrieb. Die Zeit, die für eine Entscheidung benötigt wird, ist jedoch oft entscheidend. In diesem Zusammenhang sollten wir Methoden zur Optimierung der Modellleistung ohne Qualitätseinbußen in Betracht ziehen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Lassen Sie uns mit der Entwicklung eines Multiwährungs-EAs mit mehreren parallel arbeitenden Strategien fortfahren. Versuchen wir, die gesamte mit der Eröffnung von Marktpositionen verbundene Arbeit von der Strategieebene auf die Ebene des EA zu verlagern, der die Strategien verwaltet. Die Strategien selbst werden nur virtuell gehandelt, ohne Marktpositionen zu eröffnen.
preview
Trailing-Stopp im Handel

Trailing-Stopp im Handel

In diesem Artikel befassen wir uns mit der Verwendung eines Trailing-Stops beim Handel. Wir werden bewerten, wie nützlich und wirksam das ist und wie es genutzt werden kann. Die Effizienz eines Trailing-Stopps hängt weitgehend von der Preisvolatilität und der Wahl des Stop-Loss-Niveaus ab. Für die Festlegung eines Stop-Loss können verschiedene Ansätze verwendet werden.
preview
Neuronale Netze leicht gemacht (Teil 71): Zielkonditionierte prädiktive Kodierung (Goal-Conditioned Predictive Coding, GCPC)

Neuronale Netze leicht gemacht (Teil 71): Zielkonditionierte prädiktive Kodierung (Goal-Conditioned Predictive Coding, GCPC)

In früheren Artikeln haben wir die Decision-Transformer-Methode und mehrere davon abgeleitete Algorithmen besprochen. Wir haben mit verschiedenen Zielsetzungsmethoden experimentiert. Während der Experimente haben wir mit verschiedenen Arten der Zielsetzung gearbeitet. Die Studie des Modells über die frühere Trajektorie blieb jedoch immer außerhalb unserer Aufmerksamkeit. In diesem Artikel. Ich möchte Ihnen eine Methode vorstellen, die diese Lücke füllt.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 1): Zusammenarbeit von mehreren Handelsstrategien

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 1): Zusammenarbeit von mehreren Handelsstrategien

Es gibt eine ganze Reihe von verschiedenen Handelsstrategien. Daher kann es sinnvoll sein, mehrere Strategien parallel anzuwenden, um Risiken zu diversifizieren und die Stabilität der Handelsergebnisse zu erhöhen. Wenn jedoch jede Strategie als separater Expert Advisor (EA) implementiert wird, wird die Verwaltung ihrer Arbeit auf einem Handelskonto sehr viel schwieriger. Um dieses Problem zu lösen, wäre es sinnvoll, den Betrieb verschiedener Handelsstrategien innerhalb eines einzigen EA zu implementieren.
preview
Neuronale Netze leicht gemacht (Teil 70): Operatoren der Closed-Form Policy Improvement (CFPI)

Neuronale Netze leicht gemacht (Teil 70): Operatoren der Closed-Form Policy Improvement (CFPI)

In diesem Artikel werden wir uns mit einem Algorithmus vertraut machen, der geschlossene Operatoren zur Verbesserung der Politik verwendet, um die Aktionen des Agenten im Offline-Modus zu optimieren.
preview
MQL5 beherrschen, vom Anfänger zum Profi (Teil II): Grundlegende Datentypen und die Verwendung von Variablen

MQL5 beherrschen, vom Anfänger zum Profi (Teil II): Grundlegende Datentypen und die Verwendung von Variablen

Dies ist eine Fortsetzung der Serie für Anfänger. In diesem Artikel werden wir uns ansehen, wie man Konstanten und Variablen erstellt, Daten, Farben und andere nützliche Daten schreibt. Wir werden lernen, wie man Enumerationen (Aufzählungen) wie Wochentage oder Linienstile (durchgezogen, gepunktet usw.) erstellt. Variablen und Ausdrücke sind die Grundlage der Programmierung. Sie sind definitiv in 99 % der Programme vorhanden, daher ist es wichtig, sie zu verstehen. Wenn Sie also neu in der Programmierung sind, kann dieser Artikel sehr nützlich für Sie sein. Erforderliche Programmierkenntnisse: sehr einfach, innerhalb der Grenzen meines vorherigen Artikels (siehe den Link am Anfang).
preview
Neuronale Netze leicht gemacht (Teil 69): Dichte-basierte Unterstützungsbedingung für die Verhaltenspolitik (SPOT)

Neuronale Netze leicht gemacht (Teil 69): Dichte-basierte Unterstützungsbedingung für die Verhaltenspolitik (SPOT)

Beim Offline-Lernen verwenden wir einen festen Datensatz, der die Umweltvielfalt nur begrenzt abdeckt. Während des Lernprozesses kann unser Agent Aktionen generieren, die über diesen Datensatz hinausgehen. Wenn es keine Rückmeldungen aus der Umwelt gibt, wie können wir dann sicher sein, dass die Bewertungen solcher Maßnahmen korrekt sind? Die Beibehaltung der Agentenpolitik innerhalb des Trainingsdatensatzes ist ein wichtiger Aspekt, um die Zuverlässigkeit des Trainings zu gewährleisten. Darüber werden wir in diesem Artikel sprechen.