
DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象
在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。

基于画布的指标:为通道填充透明度
在本文中,我将介绍一种创建自定义指标的方法,该方法利用标准库中的类 CCanvas 来完成绘图,并可查看图表属性以便坐标转换。 我将着手处理特殊的指标,其需要用透明度填充两条线之间的区域。

DoEasy. 控件(第 4 部分):面板控件,Padding(填充)和 Dock(驻靠)参数
在本文中,我将实现处理 Padding(填充,元素所有侧边的内部缩进/边距)和 Dock(驻靠)参数(对象在其容器中的定位方式)。

从头开始开发智能交易系统(第 29 部分):谈话平台
在本文中,我们将学习如何让 MetaTrader 5 平台谈话。 我们如何才能让 EA 更有趣呢? 金融市场交易往往过于无聊和单调,但我们能够令这项工作少些无趣。 请注意,对于那些经历过上瘾等问题的人来说,这个项目可能是危险的。 然而,在一般情况下,它只会让事情聊胜于无。

群体优化算法:粒子群(PSO)
在本文中,我将研究流行的粒子群优化(PSO)算法。 之前,我们曾讨论过优化算法的重要特征,如收敛性、收敛率、稳定性、可伸缩性,并开发了一个测试台,并研究了最简单的 RNG 算法。

种群优化算法:鱼群搜索(FSS)
鱼群搜索(FSS)是一种新的优化算法,其灵感来自鱼群中鱼的行为,其中大多数(高达 80%)游弋在有组织的亲属群落中。 经证明,鱼类的聚集在觅食效率和保护捕食者方面起着重要作用。

种群优化算法:类电磁算法(EM - ElectroMagnetism)
本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。

MQL5 酷宝书 — 服务
本文讲述了服务的多功能性 — 不需要绑定图的 MQL5 程序。 我还会重点介绍服务与其它 MQL5 程序的区别,并强调开发人员使用服务的细微差别。 作为示例,为读者提供了各种任务,涵盖了可以作为服务实现的各种功能。

DoEasy. 控件(第 6 部分):面板控件,自动调整容器大小来适应内部内容
在本文中,我将继续研究面板 WinForms 对象,并实现自动调整大小,以便适应位于面板内的 Dock 对象的常规大小。 此外,我将向品种函数库对象添加新属性。


DoEasy 函数库中的图形(第九十六部分):窗体对象中的图形和鼠标事件的处理
在本文中,我将启动创建处理窗体对象中的鼠标事件的功能,以及向品种对象添加新属性并跟踪。 此外,我将改进品种对象类,因为图表品种现在有新的属性需要考虑和跟踪。


DoEasy 函数库中的图形(第九十二部分):标准图形对象记忆类。 对象属性变更历史记录
在本文中,我将创建标准图形对象记忆类,能够在对象修改其属性时保存其过往状态。 反之,这样就能够溯源以前的图形对象状态。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

Scikit-Learn 库中的分类模型及其导出到 ONNX
在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。

如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标
本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。

DoEasy. 控件(第 15 部分):TabControl WinForms 对象 — 多行选项卡标题、选项卡处理方法
在本文中,我将继续工作于 TabControl WinForm 对象 — 我将创建一个选项卡字段对象类,令选项卡标题排列几行成为可能,并添加处理对象相应选项卡的方法。

群体优化算法:智能水滴(IWD)算法
文章探讨了一种源自无生命自然的有趣算法 - 模拟河床形成过程的智能水滴(IWD,Intelligent Water Drops)。这种算法的理念大大改进了之前的评级领先者 - SDS。与往常一样,新的领先者(修改后的 SDSm)可在附件中找到。

DoEasy. 控件 (第 5 部分): 基准 WinForms 对象,面板控件,AutoSize 参数
在本文中,我将创建所有函数库 WinForms 对象的基准对象,并开始实现面板 WinForms 对象的 AutoSize 属性 — 自动调整尺寸,从而适应对象内部内容。

时间序列挖掘的数据标签(第4部分):使用标签数据的可解释性分解
本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

为EA交易提供指标的现成模板(第2部分):交易量和比尔威廉姆斯指标
在本文中,我们将研究交易量和比尔威廉姆斯指标类别的标准指标。我们将创建现成的模板,用于EA中的指标使用——声明和设置参数、指标初始化和析构,以及从EA中的指示符缓冲区接收数据和信号。

DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据
本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。

开发回放系统(第32部分):订单系统(一)
在我们迄今为止开发的所有东西中,正如你可能会注意到并最终同意的那样,这个系统是最复杂的。现在我们需要做一些非常简单的事情:让我们的系统模拟交易服务器的操作。准确实现交易服务器操作方式似乎是一件轻而易举的事情。至少说起来是这样。但我们需要这样做,以便对回放/模拟系统的用户来说,一切都是无缝和透明的。

模式搜索的暴力方法(第六部分):循环优化
在这篇文章中,我将展示改进的第一部分,这些改进不仅使我能够使MetaTrader 4和5交易的整个自动化链闭环,而且还可以做一些更有趣的事情。从现在起,这个解决方案使我能够完全自动化创建EA和优化,并最大限度地降低寻找有效交易配置的劳动力成本。

开发回放系统(第33部分):订单系统(二)
今天,我们将继续开发订单系统。正如您将看到的,我们将大规模重用其他文章中已经展示的内容。尽管如此,你还是会在这篇文章中获得一点奖励。首先,我们将开发一个可以与真实交易服务器一起使用的系统,无论是从模拟账户还是从真实账户。我们将广泛使用MetaTrader 5平台,该平台将从一开始就为我们提供所有必要的支持。

DoEasy 函数库中的图形(第九十九部分):依据单个控制点移动扩展图形对象
在前一篇文章中,我实现了依据控件窗体移动扩展图形对象轴点的功能。 现在,我将实现依据单个图形对象控制点(窗体)移动复合图形对象的功能。

将ML模型与策略测试器集成(结论):实现价格预测的回归模型
本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。