
MQL5 交易工具包(第 2 部分):扩展和实现仓位管理 EX5 库
了解如何在 MQL5 代码或项目中导入和使用 EX5 库。在这篇续文中,我们将通过向现有库中添加更多仓位管理功能并创建两个 EA 交易系统来扩展 EX5 库。第一个例子将使用可变指数动态平均(Variable Index Dynamic Average,VIDYA)技术指标来开发追踪止损交易策略 EA 交易,而第二个例子将利用交易面板来监控、开仓、平仓和修改仓位。这两个例子将演示如何使用和实现升级后的 EX5 仓位管理库。

开发回放系统(第 58 部分):重返服务工作
在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。

开发基于订单簿的交易系统(第一部分):指标
市场深度无疑是执行快速交易的一个非常重要的因素,特别是在高频交易(HFT)算法中。在本系列文章中,我们将探讨这种类型的交易事件,这些事件可以通过经纪商在许多可交易的交易品种上获得。我们将从一个指标开始,您可以在其中自定义直接显示在图表上的直方图的调色板、位置和大小。我们还将研究如何生成 BookEvent 事件,以在特定条件下测试指标。未来文章的其他可能主题包括如何存储价格分布数据以及如何在策略测试器中使用它。

开发回放系统(第 38 部分):铺路(II)
许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。

构建一个用于实现带约束条件的自定义最大值的通用优化公式(GOF)
在这篇文章中,我们将介绍一种在MetaTrader 5终端的设置选项卡中选择“自定义最大值”时,实现具有多个目标和约束的优化问题的方法。举例来说,优化问题可以是:最大化利润因子、净利润和恢复因子,同时满足以下条件:回撤小于10%,连续亏损次数少于5次,每周交易次数多于5次。

开发回放系统(第 43 部分):Chart Trade 项目(II)
大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。

开发回放系统(第 46 部分):Chart Trade 项目(五)
厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。

开发回放系统(第 49 部分):事情变得复杂 (一)
在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。

头脑风暴优化算法(第一部分):聚类
在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。

通过推送通知监控交易——一个MetaTrader 5服务的示例
在本文中,我们将探讨如何创建一个服务应用程序,用于向智能手机发送关于交易结果的通知。我们将学习如何处理标准库对象列表,以便根据所需属性组织对象的选择。

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试
本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。

重思经典策略(第八部分):基于美元兑加元(USDCAD)探讨外汇市场与贵金属
在本系列文章中,我们将重新审视一些广为人知的交易策略,看看是否能够利用人工智能(AI)来改进它们。请加入我们今天的讨论,一起测试贵金属与货币之间是否存在可靠的关系。

Connexus入门(第一部分):如何使用WebRequest函数?
本文是‘Connexus’库开发系列的开篇之作,旨在为MQL5环境下的HTTP请求提供便利支持。该项目的目的是为终端用户提供这个机会,并展示如何使用这个辅助库。我打算尽可能地简化,以便于学习,从而为进一步开发提供可能性。

从基础到中级:操作符
在本文中,我们将介绍主要的操作符。虽然这个主题很容易理解,但在代码格式中包含数学表达式时,有一些要点非常重要。如果不充分了解这些细节,经验很少或没有经验的程序员最终会放弃尝试创建自己的解决方案。

从基础到中级:Include 指令
在今天的文章中,我们将讨论一个在 MQL5 中可以找到的各种代码中广泛使用的编译指令。虽然这里对这个指令的解释相当肤浅,但重要的是你要开始了解如何使用它,因为随着你进入更高层次的编程,它很快就会变得不可或缺。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

开发回放系统(第 34 部分):订单系统 (三)
在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?

自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法
本文深入探讨了生物体的社会行为及其对新型数学模型——自适应社会行为优化(ASBO)创建的影响,为我们呈现了一个引人入胜的世界。我们将研究生物社会中观察到的领导、近邻和合作原则如何激发创新优化算法的开发。

开发回放系统(第 51 部分):事情变得复杂(三)
在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

使用MQL5中的动态时间规整进行模式识别
在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。

开发回放系统(第 57 部分):了解测试服务
需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。

基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型
在本次讨论中,我们将把一个简单的马尔可夫链应用于相对强弱指标(RSI),以观察指标穿过关键水平后的价格行为。我们得出结论,当RSI处于11-20区间时,会产生最强的买入信号;而当RSI处于71-80区间时,会产生最强的卖出信号,这在新西兰元兑日元(NZDJPY)货币对上表现得尤为明显。我们将展示如何通过对数据的处理和分析,直接从您所拥有的数据中构建出最优的交易策略。此外,我们还将展示如何训练一个深度神经网络,使其能够最优地利用转移矩阵。

开发回放系统(第 61 部分):玩转服务(二)
在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。

种群优化算法:鲸鱼优化算法(WOA)
鲸鱼优化算法(WOA)是一种受座头鲸行为和捕食策略启发的元启发式算法。该算法的核心思想在于模仿所谓的“气泡网”捕食方法,即鲸鱼在猎物周围制造气泡,然后以螺旋运动的方式攻击猎物。

Connexus的头(第三部分):掌握HTTP请求头的使用方法
我们继续开发Connexus库。在本章中,我们探讨HTTP协议中请求头的概念,解释它们是什么、它们的用途以及如何在请求中使用它们。我们将涵盖用于与API通信的主要头信息,并展示了如何在库中配置它们的实例。

HTTP和Connexus(第2部分):理解HTTP架构和库设计
本文探讨了HTTP协议的基础知识,涵盖了主要方法(GET、POST、PUT、DELETE)、状态码以及URL的结构。此外,还介绍了Conexus库的构建起点,以及CQueryParam和CURL类,这些类用于在HTTP请求中操作URL和查询参数。

细菌趋化优化(BCO)
本文介绍了细菌趋化优化(Bacterial Chemotaxis Optimization,简称 BCO)算法的原始版本及其改进版本。我们将详细探讨所有不同之处,特别关注 BCOm 的新版本,该版本简化了细菌的移动机制,减少了对位置历史的依赖,并且使用了比原始版本计算量更小的数学方法。我们还将进行测试并总结结果。

使用MQL5和Python构建自优化的EA(第四部分):模型堆叠
今天,我们将展示如何构建能够从自身错误中学习的AI驱动的交易应用程序。我们将展示一种称为堆叠(stacking)的技术,我们使用2个模型来做出1个预测。第一个模型通常是较弱的学习器,而第二个模型通常是更强大的模型,它学习较弱学习器的残差。我们的目标是创建一个模型集成,以期获得更高的准确性。

开发回放系统(第 42 部分):图表交易项目(I)
我们来创建一些更有趣的东西。我不想毁掉惊喜,故此紧随本文以便更好地理解。自本系列开发回放/模拟器系统的最开始,我就一直说,我们的意图是按相同的方式使用 MetaTrader 5 平台,无论正在开发的系统中,亦或真实市场中。重点是要正确完成。没有人愿意在训练和学习时用一种工具,而在战斗时不得不换另一种工具。

人工协作搜索算法 (ACS)
人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。

在 MQL5 中创建交易管理员面板(第五部分):双因素认证(2FA)
今天,我们将讨论如何增强当前正在开发的交易管理员面板的安全性。我们将探讨如何在新的安全策略中实施 MQL5,并将 Telegram API 集成到双因素认证(2FA)中。本次讨论将提供有关 MQL5 在加强安全措施方面的应用的宝贵见解。此外,我们还将研究 MathRand 函数,重点关注其功能以及如何在我们构建的安全框架中有效利用它。继续阅读以了解更多信息!