Статьи об интеграции MetaTrader 5 с помощью языка MQL5

icon

Задачи, которые встают перед трейдером, интересны и, зачастую, требуют нестандартных подходов. Здесь вы найдете статьи, в которых предлагаются самые неожиданные решения для оценки, анализа и обработки ценовых данных и результатов торговли. Подключение баз данных и ICQ, использование OpenCL и  социальных сетей, использование Delphi и C# - всё это затрагивают авторы предлагаемых статей.

Читайте, и вы узнаете, как использовать специализированные математические и нейронные пакеты, а также многое другое. Станьте автором и поделитесь уникальными знаниями с MQL5.community.

Новая статья
последние | лучшие
preview
Как подключить MetaTrader 5 к PostgreSQL

Как подключить MetaTrader 5 к PostgreSQL

В статье описываются четыре метода подключения кода MQL5 к базе данных Postgres и предоставляется пошаговое руководство по настройке среды разработки для одного из них, REST API, с использованием подсистемы Windows для Linux (WSL). Показано демонстрационное приложение для API с соответствующим кодом MQL5 для вставки данных и запросов к соответствующим таблицам, а также демонстрационный советник для использования этих данных.
preview
Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Эта статья раскрывает потенциал Value at Risk (VaR) модели для оптимизации мультивалютного портфеля. Используя мощь Python и функционал MetaTrader 5, мы демонстрируем, как реализовать VaR-анализ для эффективного распределения капитала и управления позициями. От теоретических основ до практической реализации, статья охватывает все аспекты применения одной из наиболее устойчивых систем расчета рисков — VaR — в алгоритмической торговле.
preview
Алгоритмическая торговля с MetaTrader 5 и R для начинающих

Алгоритмическая торговля с MetaTrader 5 и R для начинающих

В статье мы объединим финансовый анализ с алгоритмической торговлей, а также посмотрим, как можно подружить R и MetaTrader 5. Эта статья — руководство по объединению аналитической гибкости R с огромными торговыми возможностями MetaTrader 5.
preview
Индикатор силы и направления тренда на 3D-барах

Индикатор силы и направления тренда на 3D-барах

Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
preview
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 2): Функции MQL5 для HTTP-взаимодействия с REST API игры "крестики-нолики"

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 2): Функции MQL5 для HTTP-взаимодействия с REST API игры "крестики-нолики"

В этой статье расскажем о том, как MQL5 может взаимодействовать с Python и FastAPI, используя HTTP-вызовы в MQL5 для взаимодействия с игрой "крестики-нолики" на Python. В статье рассматривается создание API с помощью FastAPI для этой интеграции и приводится тестовый скрипт на MQL5, подчеркивающий универсальность MQL5, простоту Python и эффективность FastAPI в соединении различных технологий для создания инновационных решений.
preview
Упрощаем торговлю на новостях (Часть 3): Совершаем сделки

Упрощаем торговлю на новостях (Часть 3): Совершаем сделки

В этой статье наш советник новостной торговли начнет открывать сделки на основе экономического календаря, хранящегося в нашей базе данных. Кроме того, мы улучшим графику советника, чтобы отображать более актуальную информацию о предстоящих событиях экономического календаря.
preview
Интеграция ML-моделей с тестером стратегий (Заключение): Реализация регрессионной модели для прогнозирования цен

Интеграция ML-моделей с тестером стратегий (Заключение): Реализация регрессионной модели для прогнозирования цен

В данной статье описывается реализация регрессионной модели на основе дерева решений для прогнозирования цен финансовых активов. Мы уже провели подготовку данных, обучение и оценку модели, а также ее корректировку и оптимизацию. Однако важно отметить, что данная модель является лишь исследованием и не должна использоваться при реальной торговле.
preview
Построение экономических прогнозов: потенциальные возможности Python

Построение экономических прогнозов: потенциальные возможности Python

Как использовать экономические данные Всемирного банка для прогнозирования? Что будет если совместить модели ИИ и экономику?
preview
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 1): Как использовать RestAPI в MQL5

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 1): Как использовать RestAPI в MQL5

В этой статье мы расскажем о важности интерфейсов программирования API для взаимодействия между различными приложениями и программными системами. В ней подчеркивается роль API в упрощении взаимодействия между приложениями, позволяя им эффективно обмениваться данными и функциональными возможностями.
preview
Многомодульный торговый робот на Python и MQL5 (Часть I): Создание базовой архитектуры и первых модулей

Многомодульный торговый робот на Python и MQL5 (Часть I): Создание базовой архитектуры и первых модулей

Разрабатываем модульную торговую систему, объединяющую Python для анализа данных с MQL5 для исполнения сделок. Четыре независимых модуля параллельно следят за разными аспектами рынка: объемами, арбитражем, экономикой и рисками, а для анализа используют RandomForest с 400 деревьями. Особый упор сделан на риск-менеджмент, ведь без грамотного управления рисками даже самые продвинутые торговые алгоритмы бесполезны.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Статья является пятой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части мы опишем структуру пакетов PUBLISH - как мы устанавливаем их флаги публикации (Publish Flags), кодируем строки названий тем и устанавливаем идентификаторы пакетов, когда это необходимо.
preview
Изучаем конформное прогнозирование финансовых временных рядов

Изучаем конформное прогнозирование финансовых временных рядов

В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.
preview
MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram

В этой статье мы создадим MQL5-советник, интегрированный с Telegram, который отправляет в мессенджер сигналы пересечения скользящих средних. Мы подробно опишем процесс генерации торговых сигналов на основе пересечений скользящих средних, реализуем необходимый код на языке MQL5 и обеспечим бесперебойную работу интеграции. В результате мы получим систему, которая отправляет торговые оповещения в реальном времени непосредственно в групповой чат Telegram.
preview
Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)

Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)

Знание того, как вводить данные из Web в советник, не так очевидно, вернее, не так просто, чтобы это можно было сделать без понимания всех возможностей, которые есть в MetaTrader 5.
preview
Популяционный ADAM (Adaptive Moment Estimation)

Популяционный ADAM (Adaptive Moment Estimation)

В статье представлено превращение известного и популярного градиентного метода оптимизации ADAM в популяционный алгоритм и его модификация с введением гибридных особей. Новый подход позволяет создавать агентов, комбинирующих элементы успешных решений с использованием вероятностного распределения. Ключевое нововведение — формирование гибридных популяционных особей, которые адаптивно аккумулируют информацию от наиболее перспективных решений, повышая эффективность поиска в сложных многомерных пространствах.
preview
Разрабатываем мультивалютный советник (Часть 8): Проводим нагрузочное тестирование и обрабатываем новый бар

Разрабатываем мультивалютный советник (Часть 8): Проводим нагрузочное тестирование и обрабатываем новый бар

По мере продвижения мы использовали в одном советнике всё больше и больше одновременно работающих экземпляров торговых стратегий. Попробуем выяснить до какого количества экземпляров мы можем дойти прежде, чем столкнёмся ограничениями ресурсов.
preview
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность

Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность

Во второй части статьи перейдем к практической реализации алгоритма BSO, проведем тесты на тестовых функциях и сравним эффективность BSO с другими методами оптимизации.
preview
Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python

Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python

Пока что мы рассматривали автоматизацию запуска последовательных процедур оптимизации советников исключительно в штатном тестере стратегий. Но что делать, если между такими запусками нам хотелось бы выполнить некоторую обработку уже полученных данных, используя другие средства? Попробуем добавить возможность создания новых этапов оптимизации, выполняемых программами, написанными на Python.
preview
Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)

Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)

Мы создали уже довольно много компонентов, которые помогают организовать процесс автоматической оптимизации. При создании мы придерживались традиционной цикличности: от создания минимального рабочего кода до рефакторинга и получения улучшенного кода. Пришло время заняться наведением порядка в нашей базе данных, которая тоже является ключевым компонентом в создаваемой системе.
preview
Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

План разработки советника предусматривает несколько этапов с сохранением промежуточных результатов в базе данных. Заново достать их оттуда можно только в виде строк или чисел, а не объектов. Поэтому нам нужен способ воссоздания в советнике нужных объектов из строк, прочитанных из базы данных.
preview
Выявление и классификация фрактальных паттернов посредством машинного обучения

Выявление и классификация фрактальных паттернов посредством машинного обучения

В этой статье мы затронем интригующую тему фрактального анализа и прогнозирования рынков посредством машинного обучения. Это только первые шаги на пути к исследованию многообразных фрактальных структур, которые образуются на графиках финансовых котировок. Мы используем корреляцию для поиска паттернов и алгоритм CatBoost для классификации этих паттернов.
preview
Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5

Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5

В этой статье мы описываем реализацию Многослойного итерационного алгоритма как метода группового учета аргументов на языке MQL5.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.
preview
Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков

Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков

Что такое угловой анализ финансовых рынков? Как использовать углы движения цен и машинное обучение для точного прогнозирования с точностью 67? Как совместить регрессионную и классификационную модель с угловыми признаками и получить работающий алгоритм? Причем тут Ганн? Почему углы движения цен являются хорошим признаком для машинного обучения?
preview
Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)

Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)

В этой статье рассмотрим ещё один алгоритм оптимизации, инспирированный неживой природой - алгоритм поиска системой зарядов (CSS). Цель этой статьи - представить новый алгоритм оптимизации, основанный на принципах физики и механики.
preview
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 3): Создание автоматических ходов и тестовых скриптов на MQL5

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 3): Создание автоматических ходов и тестовых скриптов на MQL5

В этой статье рассматривается реализация автоматических ходов в игре "Крестики-нолики" на языке Python, интегрированная с функциями MQL5 и модульными тестами. Цель - улучшить интерактивность игры и обеспечить надежность системы с помощью тестирования на MQL5. Изложение охватывает разработку игровой логики, интеграцию и практическое тестирование, а завершается созданием динамической игровой среды и надежной интегрированной системы.
preview
Исследуем регрессионные модели для причинно-следственного вывода и трейдинга

Исследуем регрессионные модели для причинно-следственного вывода и трейдинга

В данной статье проведено исследование на тему возможности применения регрессионных моделей в алгоритмической торговле. Регрессионные модели, в отличие от бинарной классификации, дают возможность создавать более гибкие торговые стратегии за счет количественной оценки прогнозируемых ценовых изменений.
preview
Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 1): Создание панели

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 1): Создание панели

В статье рассматриваются основные этапы создания и реализации панели графического пользовательского интерфейса (Graphical User Interface, GUI) с помощью языка MetaQuotes Language 5 (MQL5). Пользовательские панели утилит повышают качество взаимодействия с системой при торговле, упрощая типовые задачи и визуализируя важную торговую информацию. Создавая пользовательские панели, трейдеры могут оптимизировать рабочий процесс и сэкономить время при торговых операциях.
preview
Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)

Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)

В статье исследуется алгоритм BSA, основанный на поведении птиц, который вдохновлен коллективным стайным взаимодействием птиц в природе. Различные стратегии поиска индивидов в BSA, включая переключение между поведением в полете, бдительностью и поиском пищи, делают этот алгоритм многоаспектным. Он использует принципы стайного поведения, коммуникации, адаптивности, лидерства и следования птиц для эффективного поиска оптимальных решений.
preview
Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)

Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)

В статье рассмотрим принцип построения многопопуляционных алгоритмов и в качестве примера такого вида алгоритмов разберём Эволюцию социальных групп (ESG), новый авторский алгоритм. Мы проанализируем основные концепции, механизмы взаимодействия популяций и преимущества этого алгоритма, а также рассмотрим его производительность в задачах оптимизации.
preview
Использование JSON Data API в MQL-проектах

Использование JSON Data API в MQL-проектах

Представьте, что вы можете использовать данные, которых нет в MetaTrader. Обычно вы получаете информацию только от индикаторов, основанных на анализе цен и техническом анализе. Теперь представьте, что у вас есть доступ к данным, которые выведут ваши торговые возможности на новый уровень. Вы можете значительно увеличить мощность платформы MetaTrader, если объедините её возможности с результатами работы других программ, методов макроанализа и ультрасовременных инструментов через API. В этой статье мы расскажем, как использовать API, и представим полезные и ценные API-сервисы.
preview
Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Система прогнозирования EURUSD с применением компьютерного зрения и глубокого обучения. Узнайте, как сверточные нейронные сети могут распознавать сложные ценовые паттерны на валютном рынке и предсказывать движение курса с точностью до 54%. Статья раскрывает методологию создания алгоритма, использующего технологии искусственного интеллекта для визуального анализа графиков вместо традиционных технических индикаторов. Автор демонстрирует процесс трансформации ценовых данных в «изображения», их обработку нейронной сетью и уникальную возможность заглянуть в «сознание» ИИ через карты активации и тепловые карты внимания. Практический код на Python с использованием библиотеки MetaTrader 5 позволяет читателям воспроизвести систему и применить ее в собственной торговле.
preview
Оптимизация портфеля на форексе: Синтез VaR и теории Марковица

Оптимизация портфеля на форексе: Синтез VaR и теории Марковица

Как осуществляется портфельная торговля на Форекс? Как могут быть синтезированы портфельная теория Марковица для оптимизации пропорций портфеля и VaR модель для оптимизации риска портфеля? Создаем код по портфельной теории, где, с одной стороны, получим низкий риск, а с другой — приемлемую долгосрочную доходность.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 4)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 4)

Статья является четвертой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT. В этой части мы рассматриваем свойства MQTT v5.0, их семантику, то, как мы читаем некоторые из них, а также приводим краткий пример того, как свойства можно использовать для расширения протокола.
preview
Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть 3): Интеграция с тестером стратегии - Обзор (I)

Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть 3): Интеграция с тестером стратегии - Обзор (I)

Многослойный перцептрон - это эволюция простого перцептрона, способного решать нелинейно разделяемые задачи. Вместе с алгоритмом обратного распространения можно эффективно обучить данную нейронную сеть. В третьей части серии статей о многослойном перцептроне и обратном распространении мы посмотрим, как интегрировать эту технику в тестер стратегий. Эта интеграция позволит использовать комплексный анализ данных и принимать лучшие решения для оптимизации торговых стратегий. В данном обзоре мы обсудим преимущества и проблемы применения этой методики.
preview
Арбитражный трейдинг Forex: Анализ движений синтетических валют и их возврат к среднему

Арбитражный трейдинг Forex: Анализ движений синтетических валют и их возврат к среднему

В статье попробуем рассмотреть движения синтетических валют на связке Python + MQL5 и понять, насколько реален арбитраж на Форекс сегодня. А также: готовый код Python для анализа синтетических валют и подробней о том, что такое синтетические валюты на Форекс.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который лишь недавно начал освещаться в MQL5-сообществе. Эта серия статей призвана рассмотреть некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)

Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)

Эта статья представляет уникальный эксперимент, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Работа в этом направлении позволит глубже понять, какие конкретные алгоритмы могут успешно продолжать поиск из координат, установленных пользователем в качестве отправной точки, и какие факторы влияют на их успешность в этом процессе.
preview
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.