Алгоритм оптимизации центральной силы — Central Force Optimization (CFO)
В этой статье представлен алгоритм оптимизации центральной силы (CFO), вдохновленный законами гравитации. Исследуется, как принципы физического притяжения могут решать оптимизационные задачи, где "более тяжелые" решения притягивают менее успешные аналоги.
MQL5-советник, интегрированный в Telegram (Часть 4): Модуляризация функций кода для улучшенного повторного использования
В этой статье мы реорганизуем существующий код отправки сообщений и скриншотов из MQL5 в Telegram, преобразовав его в многоразовые модульные функции. Это оптимизирует процесс, обеспечивая более эффективное выполнение и более простое управление кодом в нескольких экземплярах.
Отправка сообщений из MQL5 в Discord, создание бота Discord-MetaTrader 5
Подобно Telegram, Discord способен получать информацию и сообщения в формате JSON, используя свои коммуникационные API. В настоящей статье мы рассмотрим, как можно использовать API Discord для отправки торговых сигналов и обновлений из MetaTrader 5 в ваше торговое сообщество Discord.
Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)
Мы стремимся создать систему автоматической периодической оптимизации торговых стратегий, используемых в одном итоговом советнике. С развитием система становится всё более сложной, поэтому время от времени надо смотреть на неё в целом с целью выявления узких мест и неоптимальных решений.
Двунаправленная LSTM и квантовые вычисления для предсказания направления движения
Статья представляет воспроизводимую реализацию гибридной квантово-нейросетевой модели для алгоритмической торговли на Forex без использования реального квантового оборудования. Фиксированная трёхкубитная схема в IBM Qiskit преобразует статистики скользящего окна (средняя доходность, волатильность, размах) в распределение вероятностей, из которого вычисляются 7 квантовых метрик. Эти признаки интегрируются в архитектуру двунаправленной LSTM с регуляризацией и механизмами борьбы с дисбалансом классов (в т.ч. focal loss и sampler).
Построение модели ограничения тренда свечей (Часть 7): Улучшаем нашу модель для разработки советника
В этой статье мы подробно рассмотрим подготовку нашего индикатора для разработки советника. В ходе обсуждения будут рассмотрены дальнейшие усовершенствования текущей версии индикатора с целью повышения его точности и функциональности. Кроме того, мы внедрим новые функции, которые будут отмечать точки выхода, устранив ограничение предыдущей версии, которая определяла только точки входа.
Создание торговой панели администратора на MQL5 (Часть II): Повышение оперативности реагирования и быстрого обмена сообщениями
В настоящей статье улучшим оперативность работы панели администратора, созданную нами ранее. Кроме того, мы рассмотрим важность быстрого обмена сообщениями в контексте торговых сигналов.
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция
Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.
Введение в Connexus (Часть 1): Как использовать функцию WebRequest?
Настоящая статья является началом серии разработок для библиотеки под названием “Connexus”, предназначенной для облегчения выполнения HTTP-запросов с помощью MQL5. Цель настоящего проекта - предоставить конечному пользователю такую возможность и показать, как использовать эту вспомогательную библиотеку. Я намеревался сделать его как можно более простым, чтобы облегчить изучение и обеспечить возможность для будущих разработок.
Майнинг данных CFTC на Python и ИИ модель на их основе
Попробуем смайнить даные CFTC, загрузить отчеты COT и TFF через Python, соединить это с котировками MetaTrader 5 и моделью ИИ и получить прогнозы. Что такое отчеты COT на рынке Форекс? Как использовать отчеты COT и TFF для прогнозирования?
Разработка инструментария для анализа движения цен (Часть 12): Внешние библиотеки (III) TrendMap
Движение рынка определяется силами быков и медведей. Существуют определенные уровни, которые рынок соблюдает из-за действующих на них сил. Уровни Фибоначчи и VWAP особенно сильно влияют на поведение рынка. В этой статье мы рассмотрим стратегию, основанную на VWAP и уровнях Фибоначчи для генерации сигналов.
Разрабатываем менеджер терминалов (Часть 1): Постановка задачи
Как обеспечить возможность удобного контроля за несколькими терминалами, на которых торгуют советники, да ещё и на разных компьютерах? Попробуем создать веб-интерфейс по управлению запуском торговых терминалов MetaTrader 5 и просмотру детальной информации о работе каждого экземпляра.
Создание торговой панели администратора на MQL5 (Часть III): Расширение встроенных классов для управления темами (II)
Мы расширим существующую библиотеку Dialog, включив в нее логику управления темами. Кроме того, мы интегрируем методы переключения тем в классы CDialog, CEdit и CButton, используемые в нашем проекте панели администратора.
Создание пользовательской системы определения рыночного режима на языке MQL5 (Часть 1): Индикатор
В этой статье подробно описывается создание системы определения рыночного режима на языке MQL5 с использованием статистических методов, таких как автокорреляция и волатильность. Она предоставляет код для классов, чтобы классифицировать трендовые, диапазонные и волатильные условия, а также пользовательский индикатор.
Упрощаем торговлю на новостях (Часть 5): Совершаем сделки (II)
В этой статье мы детально рассмотрим класс управления сделками, включив в него ордера buy stop и sell stop для торговли новостными событиями, а также введем ограничение срока действия этих ордеров, чтобы предотвратить переносы торговли на следующий день. В советник будет встроена функция проскальзывания, которая попытается предотвратить или минимизировать возможное проскальзывание, которое может возникнуть при использовании стоп-ордеров в торговле, особенно во время выхода новостей.
Модель портфельного риска с использованием критерия Келли и моделирования по методу Монте-Карло
На протяжении десятилетий трейдеры использовали формулу критерия Келли для определения оптимальной доли капитала, которую можно направить на инвестиции или ставки, чтобы максимизировать долгосрочный рост при минимизации риска разорения. Однако слепое следование критерию Келли, основанному на результатах единственного бэк-тестирования, часто опасно для отдельных трейдеров, поскольку при реальной торговле торговое преимущество со временем тает, а прошлые результаты не являются предиктором будущих результатов. В настоящей статье я представлю реалистичный подход к применению критерия Келли для распределения рисков одного или нескольких советников в MetaTrader 5, основанный на результатах моделирования методом Монте-Карло с помощью Python.
Построение модели для ограничения диапазона сигналов по тренду (Часть 6): Интеграция "всё в одном"
Одной из основных проблем является управление несколькими окнами графиков одной пары, на которых запущена одна и та же программа с разными функциями. Давайте обсудим, как объединить несколько интеграций в одну основную программу. Кроме того, мы поделимся идеями по настройке программы для вывода в журнал и рассмотрим успешную трансляцию сигнала в интерфейсе графика.
От новичка до эксперта: Прогнозируемые ценовые траектории
Уровни Фибоначчи обеспечивают практическую основу, которую часто соблюдают рынки, выделяя ценовые зоны, где реакция более вероятна. В настоящей статье мы создадим советник, применяющий логику коррекции Фибоначчи для прогнозирования вероятных будущих движений и коррекции сделок с отложенными ордерами. Изучим весь рабочий процесс — от определения колебаний до построения графика уровней, контроля рисков и выполнения.
Модификация Алгоритма оптимизации динго — Dingo Optimization Algorithm M (DOAm)
Представленная в статье авторская модификация алгоритма динго высоко подняла планку для поиска лучшего из лучших алгоритма оптимизации. Возможны ли еще более высокие результаты?
Применение локализованного отбора признаков на Python и MQL5
В настоящей статье рассматривается алгоритм отбора признаков, представленный в статье "Выбор локальных признаков для классификации данных» ('Local Feature Selection for Data Classification') Наргеса Арманфарда и соавторов (Narges Armanfard et al.). Алгоритм реализован на Python для построения моделей бинарных классификаторов, которые могут быть интегрированы с приложениями MetaTrader 5 для логического вывода.
Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями
В данной статье рассматривается создание интерфейса обмена сообщениями для MetaTrader 5, предназначенного для системных администраторов, чтобы облегчить общение с другими трейдерами непосредственно внутри платформы. Недавняя интеграция социальных платформ с MQL5 позволяет быстро транслировать сигнал по разным каналам. Представьте, что вы можете проверять отправленные сигналы одним щелчком мыши — либо "ДА", либо "НЕТ". Читайте дальше, чтобы узнать больше.
Алгоритм искусственного атома — Artificial Atom Algorithm (A3)
Реализация алгоритма A3 на MQL5 — метаэвристического метода оптимизации, вдохновленного химическими процессами. Всего 2 настраиваемых параметра, компактность и небольшая популяция обеспечивают высокую скорость работы при достаточном качестве решений.
Создаем индикатор канал Кельтнера с помощью пользовательской графики Canvas на MQL5
В настоящей статье мы создаем индикатор канал Кельтнера с помощью пользовательской графики Canvas на MQL5. Мы подробно описываем интеграцию скользящих средних, расчеты ATR, а также улучшенную визуализацию графиков. Мы также расскажем о тестировании на истории, чтобы оценить эффективность индикатора и получить практическую информацию о трейдинге.
Диалектический поиск — Dialectic Search (DA)
Представляем Диалектический Алгоритм (DA) — новый метод глобальной оптимизации, вдохновленный философской концепцией диалектики. Алгоритм использует уникальное разделение популяции на спекулятивных и практических мыслителей. Тестирование показывает впечатляющую производительность до 98% в задачах малой размерности и общую эффективность 57.95%. Статья объясняет эти показатели и представляет детальное описание алгоритма и результаты экспериментов на различных типах функций.
Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)
Статья посвящена подробному анализу алгоритма Exchange Market Algorithm (EMA), который вдохновлен поведением трейдеров на фондовом рынке. Алгоритм моделирует процесс торговли акциями, где участники рынка с разным уровнем успеха применяют различные стратегии для максимизации прибыли.
Теория графов: Алгоритм Дейкстры в трейдинге
Алгоритм Дейкстры — классическое решение по поиску кратчайшего пути в теории графов, которое позволяет оптимизировать торговые стратегии путем моделирования рыночных сетей. Трейдеры могут использовать его для поиска наиболее эффективных маршрутов в данных свечного графика.
Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка
Интеграция обеспечивает бесперебойный рабочий процесс, при котором необработанные финансовые данные из MQL5 можно импортировать в пакеты обработки данных, такие как Jupyter Lab, для расширенного анализа, включая статистическое тестирование.
Передовые алгоритмы исполнения ордеров на MQL5: TWAP, VWAP и ордера Iceberg
Фреймворк MQL5, предоставляющий розничным трейдерам алгоритмы исполнения институционального уровня (TWAP, VWAP, Iceberg) с помощью унифицированного менеджера исполнения и анализатора эффективности для более плавного и точного разделения ордеров и аналитики.
Алгоритм дифференциального поиска — Differential Search Algorithm (DSA)
В статье рассматривается алгоритм дифференциального поиска DSA, имитирующий миграцию суперорганизма в поисках оптимальных условий обитания. Алгоритм использует гамма-распределение для генерации псевдо-стабильного блуждания и предлагает четыре стратегии выбора направления движения с тремя механизмами мутации координат. Какова будет производительность метода?
Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster
Мы выходим за рамки простого просмотра проанализированных показателей на графиках и переходим к более широкой перспективе, которая включает интеграцию с Telegram. Это позволит отправлять важные результаты непосредственно на мобильное устройство через Telegram.
Создание торговой панели администратора на MQL5 (Часть III): Улучшение графического интерфейса пользователя (GUI) с помощью визуального оформления (I)
В настоящей статье мы сосредоточимся на визуальном оформлении графического интерфейса пользователя (GUI) нашей торговой панели администратора с использованием MQL5. Мы рассмотрим различные методы и функции, доступные в MQL5, которые позволяют настраивать и оптимизировать интерфейс, обеспечивая его соответствие потребностям трейдеров при сохранении привлекательной эстетики.
Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)
Мой авторский алгоритм. В этой статье представлен Алгоритм Эволюционного Путешествия во Времени (TETA), вдохновлённый концепцией параллельных вселенных и потоков времени. Основная идея алгоритма заключается в том, что, хотя путешествие во времени в привычном понимании невозможно, мы можем выбирать последовательность событий, которые приводят к различным реальностям.
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (I)
Доступность новостей является критическим фактором при торговле в терминале MetaTrader 5. Несмотря на наличие множества новостных API, многие трейдеры сталкиваются с трудностями доступа к ним и их эффективной интеграции в свою торговую среду. В ходе настоящего обсуждения нашей целью является разработать оптимизированное решение, которое выводило бы новости непосредственно на график — там, где они больше всего нужны. Мы добьемся этого, создав советника «Заголовки новостей», который отслеживает и отображает обновления новостей в режиме реального времени из источников API.
Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика
В нашей серии статей об интеграции MQL5 с пакетами обработки данных мы подробно рассматриваем мощное сочетание машинного обучения и предиктивного анализа. Мы изучим, как беспрепятственно объединить MQL5 с популярными библиотеками машинного обучения, чтобы создавать сложные прогностические модели финансовых рынков.
Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)
Популяционный алгоритм оптимизации, вдохновленный спорным и малоизученным феноменом — механизмом человеческих сновидений. Группы агентов с разной "памятью", косинусоидальная модуляция движения и необычное распределение фаз 99/1 — узнайте, как эти особенности влияют на эффективность оптимизации ваших торговых стратегий.
Анализ влияния солнечных и лунных циклов на цены валют
Что если лунные циклы и сезонные паттерны влияют на валютные рынки? Эта статья показывает, как перевести астрологические концепции на язык математики и машинного обучения. Я создал Python-систему с 88 признаками на основе астрономических циклов, обучил CatBoost на 15 годах данных EUR/USD и получил интригующие результаты. Код открыт, методы проверяемы, выводы неожиданны — древняя мудрость встречается с градиентным бустингом.
Переходим на MQL5 Algo Forge (Часть 2): Работа с несколькими репозиториями
Рассмотрим один из возможных подходов к организации хранения исходного кода проекта в публичном репозитории. Используя распределение по различным веткам, создадим удобные и понятные правила для развития проекта.
Оптимизатор на основе экологического цикла — Ecological Cycle Optimizer (ECO)
Алгоритм ECO (Ecological Cycle Optimizer) представляет собой интересную метафору переноса экологического круговорота в область метаэвристической оптимизации. Идея разделения популяции на трофические уровни — продуцентов, травоядных, плотоядных, всеядных и редуцентов — создаёт иерархическую структуру поиска, где каждая группа вносит свой вклад в общий процесс оптимизации.
Определение справедливых курсов валют по ППС с помощью данных МВФ
Создание системы анализа валютных курсов на основе паритета покупательной способности (ППС) на Python. Автор разработал алгоритм с 5 методами расчета справедливых курсов, используя данные МВФ. Практическое руководство по фундаментальному анализу валют, обработке экономических данных и интеграции с торговыми системами. Полный код в open source.
Разработка инструментария для анализа движения цен (Часть 9): Внешние библиотеки
В статье рассматривается новое измерение анализа с использованием внешних библиотек, специально разработанных для расширенной аналитики. Эти библиотеки, такие как pandas, предоставляют мощные инструменты для обработки и интерпретации сложных данных, позволяя трейдерам получать более глубокое представление о динамике рынка. Интегрируя такие технологии, мы можем сократить разрыв между необработанными данными и практическими стратегиями. Здесь мы заложим основу для этого инновационного подхода и раскроем потенциал объединения технологий с опытом трейдинга.