Simulação de mercado: A união faz a força (I)
Estamos chegando aos finalmente. O desenvolvimento do replay / simulador está quase concluído. É bem verdade que ainda precisaremos fazer algumas poucas coisas. Mas frente a tudo que realmente já foi feito. Implementar o que falta será moleza. Mas como tudo que será mostrado neste artigo, precisará ser adequadamente digerido e compreendido. Quero que você, meu caro leitor e entusiasta.
Implementação do algoritmo criptográfico SHA-256 do zero em MQL5
Criar integrações com bolsas de criptomoedas sem arquivos DLL foi, por muito tempo, uma tarefa complexa, mas esta solução fornece uma base completa para conexão direta ao mercado.
Gerenciamento de riscos (Parte 3): Criação da classe principal de gerenciamento de riscos
Neste artigo começaremos a criação da classe principal de gerenciamento de riscos, que será o elemento chave para o controle de riscos no sistema. Vamos nos concentrar na construção das bases, na definição das principais estruturas, variáveis e funções. Além disso, implementaremos os métodos necessários para atribuir valores de lucro máximo e prejuízo máximo, estabelecendo assim o alicerce do gerenciamento de riscos.
Desenvolvendo um EA multimoeda (Parte 26): Informador para instrumentos de negociação
Antes de avançarmos ainda mais no desenvolvimento de EAs multimoeda, vamos tentar mudar o foco para a criação de um novo projeto que utilize a biblioteca já desenvolvida. Com esse exemplo, identificaremos como é melhor organizar o armazenamento do código-fonte e como o novo repositório de código da MetaQuotes pode nos ajudar.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC
Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.
Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data
Explorando técnicas avançadas para integrar o MQL5 com ferramentas poderosas de processamento de dados, esta parte se concentra no tratamento eficiente de big data para aprimorar a análise de negociação e a tomada de decisões.
Integração de APIs de Corretoras com Expert Advisors usando MQL5 e Python
Neste artigo, discutiremos a implementação do MQL5 em parceria com o Python para realizar operações relacionadas à corretora. Imagine ter um Expert Advisor (EA) em execução contínua hospedado em um VPS, executando negociações em seu nome. Em determinado momento, a capacidade do EA de gerenciar fundos torna-se fundamental. Isso inclui operações como adicionar fundos à sua conta de negociação e iniciar retiradas. Nesta discussão, iremos esclarecer as vantagens e a implementação prática desses recursos, garantindo a integração perfeita do gerenciamento de fundos à sua estratégia de negociação. Fique atento!
Simulação de mercado: A união faz a força (II)
Até o momento, a aplicação que estava sendo desenvolvida nesta sequência de artigos. Visava apenas e tão somente simular a parte gráfica. Mas para um sistema mais completo, onde temos a possibilidade de experimentar um Expert Advisor dentro do serviço de replay/simulador. Precisamos também fazer a simulação do servidor de negociação. Você notará, que a simulação usará o mínimo do mínimo possível. Mas se você, meu caro leitor, desejar, poderá completar as partes que faltam. Mas como isto não fará diferença para o que estou disposto a mostrar. Já temos mais do que o suficiente para desenvolver o que foi planejado.
Implementação do modelo de tabela em MQL5: Aplicação do conto MVC
Neste artigo, analisaremos o desenvolvimento do modelo de tabela na linguagem MQL5, usando o conceito arquitetônico MVC (Model-View-Controller), que separa a lógica dos dados, a apresentação e o controle, o que ajuda a criar um código estruturado, flexível e escalável. Examinaremos a implementação das classes para construir o modelo de tabela, incluindo o uso de listas ligadas para armazenar dados.
Implementação do mecanismo de breakeven em MQL5 (Parte 1): Classe base e modo de breakeven por pontos fixos
Neste artigo, analisamos a aplicação do mecanismo de breakeven (ponto de equilíbrio) em estratégias automatizadas na linguagem MQL5. Começaremos com uma explicação simples do que é o modo de breakeven, como ele é implementado e quais são suas possíveis variações. Em seguida, essa funcionalidade será integrada ao EA Order Blocks, criado por nós no último artigo sobre gerenciamento de riscos. Para avaliar a eficácia, faremos dois backtests sob determinadas condições: um com a aplicação do mecanismo de breakeven e outro, sem.
Desenvolvimento do Toolkit de Análise de Price Action (Parte 8): Painel de Métricas
Como um dos mais poderosos toolkits de análise de Price Action, o Painel de Métricas foi projetado para otimizar a análise de mercado, fornecendo instantaneamente métricas essenciais do mercado com apenas um clique de botão. Cada botão exerce uma função específica, seja para analisar tendências de máxima/mínima, volume ou outros indicadores-chave. Esta ferramenta entrega dados precisos e em tempo real exatamente quando você mais precisa. Vamos explorar mais profundamente seus recursos neste artigo.
MQL5 Trading Toolkit (Parte 7): Expandindo a Biblioteca EX5 de Gerenciamento de Histórico com as Funções da Última Ordem Pendente Cancelada
Aprenda como concluir a criação do módulo final na biblioteca History Manager EX5, com foco nas funções responsáveis por lidar com a ordem pendente cancelada mais recente. Isso fornecerá a você as ferramentas para recuperar e armazenar de forma eficiente os principais detalhes relacionados às ordens pendentes canceladas com MQL5.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 9): Fluxo Externo
Este artigo explora uma nova dimensão de análise utilizando bibliotecas externas especificamente projetadas para análises avançadas. Essas bibliotecas, como o pandas, fornecem ferramentas poderosas para processar e interpretar dados complexos, permitindo que os traders obtenham percepções mais profundas sobre a dinâmica do mercado. Ao integrar essas tecnologias, podemos reduzir a lacuna entre dados brutos e estratégias acionáveis. Junte-se a nós enquanto estabelecemos as bases dessa abordagem inovadora e desbloqueamos o potencial de combinar tecnologia com expertise em trading.