
Usando o AutoIt com MQL5
Este artigo descreve como criar scripts para o terminal MetraTrader 5, integrando MQL5 com AutoIt. Vou mostrar como automatizar várias tarefas usando a interface do usuário do terminal e apresentar uma classe que usa a biblioteca AutoItX.

Operações com Matrizes e Vetores em MQL5
Matrizes e vetores foram introduzidos na MQL5 para operações eficientes com soluções matemáticas. Os novos tipos oferecem métodos integrados para a criação de código conciso e compreensível que se aproxima da notação matemática. Os arrays fornecem recursos extensos, mas há muitos casos em que as matrizes são muito mais eficientes.

Otimização Walk Forward contínua (Parte 8): Melhorias e correções do programa
O programa foi modificado com base nos comentários e solicitações dos usuários e leitores desta série de artigos. Este artigo contém uma nova versão do otimizador automático. Esta versão implementa os recursos solicitados e fornece outras melhorias, que eu descobri ao trabalhar com o programa.

Gradient boosting no aprendizado de máquina transdutivo e ativo
Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).

Desenvolvendo um EA de negociação do zero (Parte 17): Acessando dados na WEB (III)
Como obter dados da WEB para serem usados em um EA. Então vamos por as mãos na massa, ou melhor começar a codificar um sistema alternativo.

Otimização paralela pelo método de enxame de partículas (Particle Swarm Optimization)
Este artigo descreve uma forma de otimização rápida por meio do método de enxame de partículas e apresenta uma implementação em MQL pronta para ser utilizada tanto no modo thread único dentro do EA quanto no modo multi-thread paralelo com complemento que executado nos agentes locais do testador.

Teoria das Categorias em MQL5 (Parte 1)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.

Algoritmos de otimização populacionais: algoritmo de vaga-lumes
Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.

Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (II)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos princípios fundamentais da programação orientada a objetos e aprenda a desenvolver e usar de forma fácil e eficiente uma ou mais GUIs móveis em um único gráfico.

Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (I)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos eventos do gráfico e saiba como projetar e implementar uma GUI móvel simples e múltipla em um único gráfico. O artigo também aborda a adição de elementos à GUI, aumentando sua funcionalidade e apelo estético.

Robô de trading multimódulo em Python e MQL5 (Parte I): Criando a arquitetura básica e os primeiros módulos
Estamos desenvolvendo um sistema de trading modular que combina Python para análise de dados com MQL5 para execução de ordens. Quatro módulos independentes monitoram paralelamente diferentes aspectos do mercado: volumes, arbitragem, economia e riscos, utilizando RandomForest com 400 árvores para análise. É dado um foco especial no gerenciamento de risco, pois sem uma gestão adequada, até os algoritmos de trading mais avançados tornam-se inúteis.

Desenvolvendo um EA multimoeda (Parte 9): Coleta dos resultados de otimização de instâncias individuais da estratégia de trading
Vamos delinear as principais etapas para o desenvolvimento do nosso EA. Uma das primeiras será realizar a otimização de uma instância individual da estratégia de trading desenvolvida. Tentaremos reunir em um único lugar todas as informações necessárias sobre as execuções do testador durante a otimização.

Integrando modelos de ML ao Testador de Estratégias (Conclusão): Implementação de um Modelo de Regressão para Previsão de Preço
Este artigo descreve a implementação de um modelo de regressão de árvores de decisão para prever preços de ativos financeiros. Foram realizadas etapas de preparação dos dados, treinamento e avaliação do modelo, com ajustes e otimizações. No entanto, é importante destacar que o modelo é apenas um estudo e não deve ser usado em negociações reais.

Validação cruzada combinatoriamente simétrica no MQL5
Neste artigo veremos como implementar a verificação cruzada combinatoriamente simétrica no MQL5 puro para medir o grau de ajuste após a otimização de uma estratégia usando o algoritmo completo e lento do testador de estratégias.

Tutorial DirectX (Parte I): Desenhando o primeiro triângulo
Este é um artigo introdutório sobre o DirectX, que descreve as especificidades da operação com a API. Ele deve ajudar a entender a ordem em que seus componentes são inicializados. O artigo contém um exemplo de como escrever um script MQL5 que renderiza um triângulo usando o DirectX.

Desenvolvimento de robô em Python e MQL5 (Parte 1): Pré-processamento de dados
Esse será um guia detalhado sobre como desenvolver um robô de trading baseado em aprendizado de máquina. Realizaremos a coleta e preparação de dados e características. Para a execução do projeto, utilizaremos a linguagem de programação Python e bibliotecas, bem como a plataforma MetaTrader 5.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 5): Enviando Comandos do Telegram para o MQL5 e Recebendo Respostas em Tempo Real
Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.

Redes neurais de maneira fácil (Parte 26): aprendizado por reforço
Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 3): Criando jogadas automáticas e Scripts de Teste em MQL5
Este artigo explora a implementação de jogadas automáticas no jogo da velha Python, integrado com funções MQL5 e testes unitários. O objetivo é aprimorar a interatividade do jogo e garantir a robustez do sistema através de testes MQL5. Ele aborda desde o desenvolvimento da lógica de jogo até a integração e testes práticos, culminando na criação de um ambiente de jogo dinâmico e um sistema integrado confiável.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5.com Integração RestAPI(Parte 2): Funções MQL5 para Interação HTTP com API REST do Jogo da Velha
O artigo detalha como MQL5 pode interagir com Python e FastAPI, usando chamadas HTTP em MQL5 para se comunicar com um jogo da velha em Python. Discute a criação de uma API com FastAPI para essa integração e inclui um script de teste em MQL5, destacando a versatilidade do MQL5, a simplicidade do Python e a eficiência do FastAPI na conexão de diferentes tecnologias para soluções inovadoras.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI(Parte 1): Usando RestAPIs em MQL5
Este artigo aborda a importância das APIs (Interfaces de Programação de Aplicativos) na comunicação entre diferentes aplicativos e sistemas de software. Ele destaca o papel das APIs na simplificação da interação entre aplicativos, permitindo que eles compartilhem dados e funcionalidades de maneira eficiente.

Desenvolvendo um EA multimoeda (Parte 1): várias estratégias de trading trabalhando juntas
Existem várias estratégias de trading. Do ponto de vista da diversificação de riscos e do aumento da estabilidade dos resultados de trading, pode ser útil usar várias estratégias em paralelo. Mas se cada estratégia for implementada como um EA separado, gerenciar o trabalho conjunto delas em uma conta de trading se torna muito mais complicado. Para resolver esse problema, é um boa idea implementar o trabalho de diferentes estratégias de trading em um único EA.

Teoria das Categorias em MQL5 (Parte 14): funtores com ordem linear
Este artigo, parte de uma série de artigos sobre a implementação da teoria das categorias no MQL5, é dedicado aos funtores. Vamos explorar como a ordem linear pode ser mapeada em um conjunto de dados através dos funtores ao analisar dois conjuntos de dados que, à primeira vista, parecem não ter nenhuma conexão entre si.

Implementação do teste aumentado de Dickey-Fuller no MQL5
Neste artigo, vamos mostrar como implementar o teste aumentado de Dickey-Fuller e sua aplicação para realizar testes de cointegração usando o método de Engle-Granger.

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)
O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.

Simulação de mercado (Parte 19): Iniciando o SQL (II)
Como eu disse no primeiro artigo sobre SQL, não faz sentido você perder tempo, programado rotinas e mais rotinas a fim de conseguir, gerar ou produzir algo que o próprio SQL já contém. Porém sem saber o básico do básico, você não conseguirá fazer nada em SQL, a fim de aproveitar de alguma forma o que esta ferramenta tem a nos oferecer. Sendo assim, aqui neste artigo iremos ver como fazer para conseguir executar tarefas primordiais a serem feitas em bancos de dados.

Receitas MQL5 — Banco de dados de eventos macroeconômicos
Este artigo explora como trabalhar com bancos de dados baseados no mecanismo SQLite. Com o objetivo de oferecer conveniência e utilizar eficientemente os princípios da OOP, foi criada a classe CDatabase. Essa classe é responsável pela criação e gerenciamento de um banco de dados de eventos macroeconômicos. Além disso, são apresentados exemplos de como utilizar diferentes métodos da classe CDatabase.

Metamodelos em aprendizado de máquina e negociação: Tempo original das ordens de negociação
Metamodelos em aprendizado de máquina: Criação automática de sistemas de negociação com quase nenhum envolvimento humano, o próprio modelo decide como operar e quando operar.

Modelos de classificação da biblioteca Scikit-learn e sua exportação para o formato ONNX
Neste artigo, exploraremos o uso de todos os modelos de classificação do pacote Scikit-learn para resolver o problema de classificação dos íris de Fisher, tentaremos convertê-los para o formato ONNX e usaremos os modelos resultantes em programas MQL5. Também compararemos a precisão dos modelos originais e suas versões ONNX no Iris dataset completo.

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python
Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.

Linguagem de programação visual DRAKON — ferramenta de comunicação Desenvolvedor/Cliente MQL
DRAKON é uma linguagem de programação visual especialmente desenvolvida para facilitar a interação entre especialistas de diferentes áreas (biólogos, físicos, engenheiros...) com programadores em projetos espaciais russos (por exemplo, na criação do complexo "Buran"). Neste artigo, vou falar sobre como o DRAKON torna a criação de algoritmos acessível e intuitivamente compreensível, mesmo para quem nunca teve contato com código, e também como é mais fácil quer seja para o cliente explicar suas ideias ao encomendar robôs de negociação quer seja para o programador cometer menos erros em funções complexas.

Redes neurais de maneira fácil (Parte 37): atenção esparsa
No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.

Dominando o ONNX: Ponto de virada para traders MQL5
Mergulhe no mundo do ONNX, um poderoso formato aberto para compartilhar modelos de aprendizado de máquina. Descubra como o uso do ONNX pode revolucionar a negociação algorítmica em MQL5, permitindo que os traders integrem sem obstáculos modelos avançados de inteligência artificial e elevem suas estratégias a um novo patamar. Desvende os segredos da compatibilidade entre plataformas e aprenda a desbloquear todo o potencial do ONNX em sua negociação no MQL5. Melhore sua negociação com este guia detalhado sobre ONNX.

Criando uma Interface Gráfica de Usuário Interativa no MQL5 (Parte 1): Criando o Painel
Este artigo explora os passos fundamentais para criar e implementar um painel de Interface Gráfica de Usuário (GUI) utilizando a Linguagem MetaQuotes 5 (MQL5). Painéis utilitários personalizados melhoram a interação do usuário no trading, simplificando tarefas comuns e visualizando informações essenciais de trading. Ao criar painéis personalizados, os traders podem otimizar seu fluxo de trabalho e economizar tempo durante as operações de trading.

Algoritmos de otimização populacionais: Algoritmo do morcego
Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.

Como conectar o MetaTrader 5 ao PostgreSQL
Esse artigo descreve quatro métodos de conexão do código MQL5 ao banco de dados Postgres e apresenta um guia passo a passo para configurar um ambiente de desenvolvimento para um deles, a API REST, por meio do Windows Subsystem for Linux (WSL). Além disso, mostra-se um aplicativo de demonstração para a API com o código MQL5 necessário para inserir dados e consultar as respectivas tabelas, bem como um EA de demonstração para usar esses dados.

Desenvolvimento de um Cliente MQTT para o MetaTrader 5: Metodologia TDD
Este artigo apresenta a primeira tentativa de desenvolver um cliente MQTT nativo para o MQL5. MQTT é um protocolo de troca de dados no formato "publicador - assinante". Ele é leve, aberto, simples e projetado para ser facilmente implementado. Isso o torna aplicável em muitas situações.

Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado
Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.

Teoria das Categorias em MQL5 (Parte 3)
A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.

Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado
Ao começar a desenvolver um EA multimoeda, já alcançamos alguns resultados e realizamos várias iterações de melhoria do código. No entanto, nosso EA não podia trabalhar com ordens pendentes e retomar o trabalho após reiniciar o terminal. Vamos adicionar essas funcionalidades.