MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
取引戦略の開発を実践する

取引戦略の開発を実践する

この記事では、独自の取引戦略の開発を試みます。どんな取引戦略も、何らかの統計的優位性に基づいていなければなりません。しかも、この利点は長く続くべきです。
preview
Candlestick Trend Constraintモデルの構築(第7回):EA開発モデルの改良

Candlestick Trend Constraintモデルの構築(第7回):EA開発モデルの改良

今回は、エキスパートアドバイザー(EA)開発のための指標の詳細な準備について掘り下げていきます。議論の中では、現行バージョンの指標にさらなる改良を加えることで、その精度と機能性の向上を図ります。さらに、前バージョンがエントリポイントの識別に限られていた制約に対応するため、新たにエグジットポイントを特定する機能を導入します。
preview
ニューラルネットワークが簡単に(第59回):コントロールの二分法(DoC)

ニューラルネットワークが簡単に(第59回):コントロールの二分法(DoC)

前回の記事では、Decision Transformerを紹介しました。しかし、外国為替市場の複雑な確率的環境は、提示した手法の可能性を完全に実現することを許しませんでした。今回は、確率的環境におけるアルゴリズムの性能向上を目的としたアルゴリズムを紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
preview
多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。
preview
デイトレードLarry Connors RSI2平均回帰戦略

デイトレードLarry Connors RSI2平均回帰戦略

Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。
preview
SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC(Smart Money Concepts、スマートマネーコンセプト)のOB(Order Blocks、注文ブロック)、BOS(Break of Structure、ブレイクオブストラクチャ)、FVG(Fair Value Gaps、公正価格ギャップ)を1つの強力なEAに統合することで、取引をさらに進化させることができます。自動モードで戦略を実行することも、特定のSMCコンセプトだけを使用することも可能で、柔軟かつ精度の高い取引が実現します。
preview
Candlestick Trend Constraintモデルの構築(第4回):トレンドの波ごとに表示スタイルをカスタマイズ

Candlestick Trend Constraintモデルの構築(第4回):トレンドの波ごとに表示スタイルをカスタマイズ

この記事では、Meta Trader 5上で様々な指標のスタイルを描画するための強力なMQL5言語の機能を探ります。また、スクリプトと、スクリプトをモデルでどのように使えるかについても見ていきます。
preview
プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ

プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ

市場の流れは、ブル(買い手)とベア(売り手)の力関係によって決まります。市場が反応する特定の水準には、そうした力が作用しています。中でも、フィボナッチとVWAPの水準は、市場の動きに強い影響を与える傾向があります。この記事では、VWAPとフィボナッチ水準に基づいたシグナル生成の戦略を一緒に探っていきましょう。
preview
リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。
preview
Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

移動平均線のクロスオーバーに基づくゴールデンクロスおよびデッドクロス戦略は、長期的な市場トレンドを見極める上で最も信頼性の高い指標の一つであることをご存知でしょうか。ゴールデンクロスは、短期移動平均線が長期移動平均線を上回るときに強気トレンドの到来を示します。一方、デッドクロスは、短期移動平均線が長期線を下回ることで弱気トレンドの兆候を示します。これらの戦略は非常にシンプルでありながら効果的ですが、手動で運用すると機会の逸失やエントリーの遅れが発生しやすいという課題があります。
preview
MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

この記事では、「トレンドフラットモメンタム(Trend Flat Momentum)戦略」のためのエキスパートアドバイザー(EA)をMQL5で開発します。移動平均線のクロスオーバーに、RSI(相対力指数)とCCI(商品チャネル指数)といったモメンタム系のフィルターを組み合わせて、トレードシグナルを生成します。また、バックテストの方法や、実運用でのパフォーマンス向上のための改善案についても取り上げます。
preview
リプレイシステムの開発 - 市場シミュレーション(第15回):シミュレーターの誕生(V) - ランダムウォーク

リプレイシステムの開発 - 市場シミュレーション(第15回):シミュレーターの誕生(V) - ランダムウォーク

この記事では、私たちのシステムのシミュレーターの開発を完成させます。ここでの主な目的は、前回の記事で説明したアルゴリズムを設定することです。このアルゴリズムは、ランダムウォークの動きを作り出すことを目的としています。したがって、今日の資料を理解するためには、過去の記事の内容を理解する必要があります。シミュレーターの開発をフォローしていない方は、この一連の流れを最初から読まれることをお勧めします。さもないと、ここで説明されることがわからなくなるかもしれません。
preview
ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

引き続き、軌道予測モデルを訓練するアルゴリズムについて説明します。この記事では、「AutoBot」と呼ばれるメソッドを紹介します。
preview
MetaTraderのMultibot(第2回):動的テンプレートの改良

MetaTraderのMultibot(第2回):動的テンプレートの改良

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

この記事では、C_Mouseクラスを実装します。このクラスは、最高水準でプログラミングする能力を提供します。しかし、高水準や低水準のプログラミング言語について語ることは、コードに卑猥な言葉や専門用語を含めることではありません。逆です。高水準プログラミング、低水準プログラミングというのは、他のプログラマーが理解しやすいか、しにくいかという意味です。
preview
多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

取引戦略を最適化した後、パラメータのセットを受け取ります。これらを使用して、1つのEAに複数の取引戦略のインスタンスを作成することができます。以前は手動でおこないましたが、ここでは、このプロセスの自動化を試みます。
preview
知っておくべきMQL5ウィザードのテクニック(第32回):正則化

知っておくべきMQL5ウィザードのテクニック(第32回):正則化

正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。
preview
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
preview
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
preview
MQL5でのAI搭載取引システムの構築(第3回):複数行入力の克服、チャットの持続性の確保、シグナル生成

MQL5でのAI搭載取引システムの構築(第3回):複数行入力の克服、チャットの持続性の確保、シグナル生成

本記事では、ChatGPTを統合したMQL5プログラムを拡張し、改良されたテキストレンダリングにより複数行入力の制限を克服します。さらに、AES256暗号化およびZIP圧縮で保存された永続的なチャット履歴をナビゲートするサイドバーを導入し、チャートデータの統合による初期売買シグナルの生成もおこないます。
preview
多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成

これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。
preview
知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

一目均衡表はトレンド識別システムとして機能する有名な日本の指標です。以前の同様の記事と同様に、パターンごとにこれを調べ、MQL5ウィザードライブラリクラスとアセンブリの助けを借りて、その戦略とテストレポートも評価します。
preview
MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

この記事では、動的なロットスケーリングを採用したMQL5のグリッドトレーディングエキスパートアドバイザー(EA)を構築します。戦略の設計、コードの実装、バックテストのプロセスについて詳しく解説します。最後に、自動売買システムを最適化するための重要な知見とベストプラクティスを共有します。
preview
多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
preview
知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)

知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)

パラボリックSAR (Stop-and-Reversal)は、トレンドの確認と終了点を示す指標です。トレンドの見極めが遅れるため、その主な目的は、ポジションのトレーリングストップロスを位置づけることです。ウィザードで組み立てられるエキスパートアドバイザー(EA)のカスタムシグナルクラスを活用して、本当にEAのシグナルとして使えるかどうか調べてみました。
preview
MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。
preview
MQL5の圏論(第23回):二重指数移動平均の別の見方

MQL5の圏論(第23回):二重指数移動平均の別の見方

この記事では、前回に引き続き、日常的な取引指標を「新しい」視点で見ていくことをテーマとします。今回は、自然変換の水平合成を取り扱いますが、これに最適な指標は、今回取り上げた内容を拡大したもので、二重指数移動平均(DEMA)です。
preview
MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

外国為替市場には繰り返しパターンや規則性が存在するのでしょうか。私は、PythonとMetaTrader 5を使って独自のパターン分析システムを構築することに決めました。これは、外国為替市場を攻略するための、数学とプログラミングの一種の融合です。
preview
MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MetaTrader 5口座の取引履歴を処理するために、MQL5ソースコード内で「History Manager EX5」ライブラリを簡単にインポートして活用する方法を、本連載の最終回となるこの記事で解説します。MQL5ではシンプルな1行の関数呼び出しで、取引データの管理や分析を効率的におこなうことが可能です。さらに、取引履歴の分析スクリプトを複数作成する方法や、実用的なユースケースとして、価格ベースのエキスパートアドバイザー(EA)の開発方法についても学んでいきます。このEAは、価格データとHistory Manager EX5ライブラリを活用し、過去のクローズ済み取引に基づいて取引判断をおこない、取引量の調整やリカバリーストラテジーの実装をおこないます。
preview
リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

これで、リプレイ/シミュレーションシステムで使用するEAの作成を開始できます。ただし、行き当たりばったりの解決策ではなく、何か改善策が必要です。にもかかわらず、最初の複雑さに怯んではなりません。どこかで始めることが重要で、そうでなければ、その課題を克服しようともせずに、その難しさを反芻してしまうことになります。それこそがプログラミングの醍醐味であり、学習、テスト、徹底的な研究を通じて障害を克服することです。
preview
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
preview
ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減

ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減

Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。
preview
高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装

この記事では、オーダーブロックのミティゲーションを検出し、描画し、アラートを発するインジケーターの作り方を学びます。また、チャート上でこれらのブロックを正確に特定する方法や、正確なアラートの設定方法、価格の動きをより理解しやすくするために矩形で位置を可視化する方法についても詳しく解説します。このインジケーターは、スマートマネーコンセプトやインナーサークルトレーダーの手法を用いるトレーダーにとって重要なツールとなるでしょう。
preview
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。
preview
MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)

このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。
preview
MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成

MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成

本記事では、Envelopes Trend取引戦略と統合されたZone Recoveryシステムを開発します。RSI (Relative Strength Index)とEnvelopesインジケーターを用いて取引を自動化し、損失を抑えるリカバリーゾーンを効果的に管理するためのアーキテクチャを詳述します。実装とバックテストを通じて、変動する市場環境に対応できる効果的な自動取引システムの構築方法を示します。
preview
知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト

経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。
preview
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。