MQL5での取引戦略の自動化(第35回):ブレーカーブロック取引システムの作成
本記事では、MQL5でブレーカーブロック取引システムを作成します。本システムは、レンジ相場を識別し、ブレイクアウトを検出、スイングポイントでブレーカーブロックを検証した上で、リスクパラメータを定義してリテスト取引を実行します。また、オーダーブロックおよびブレーカーブロックを動的なラベルと矢印で可視化し、自動売買やトレーリングストップにも対応しています。
知っておくべきMQL5ウィザードのテクニック(第67回):TRIXパターンとWilliams Percent Rangeの使用
三重指数移動平均オシレーター(TRIX: Triple Exponential Moving Average Oscillator)とウィリアムズパーセントレンジオシレーター(WPR: Williams Percent Range)は、MQL5のエキスパートアドバイザー(EA)において併用できるもう一組のインジケーターです。このインジケーターペアは、これまで取り上げたものと同様に補完関係にあり、TRIXがトレンドを定義し、ウィリアムズパーセントレンジがサポートおよびレジスタンス水準を確認します。いつものように、MQL5ウィザードを使用して、この2つが持つ可能性をプロトタイピングします。
取引システムの構築(第3回):現実的な利益目標のための最小リスクレベルの決定
すべてのトレーダーの究極の目標は収益を上げることです。そのため、多くのトレーダーは、定められた取引期間内に達成すべき具体的な利益目標を設定します。本記事では、モンテカルロシミュレーションを用いて、取引目標を達成するために必要な取引ごとの最適なリスク割合を算出します。この結果は、利益目標が現実的か、それとも過度に野心的かを判断する際に役立ちます。最後に、取引目標に見合った実用的なリスク割合を設定するために調整可能なパラメータについても解説します。
タブーサーチ(TS)
この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化
本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。
MQL5での取引戦略の自動化(第20回):CCIとAOを使用した多銘柄戦略
この記事では、CCI (Commodity Channel Index)とAO (Awesome Oscillator)を用いてトレンド反転を検出する多銘柄取引戦略を作成します。戦略の設計、MQL5での実装、バックテストのプロセスについて解説します。記事の最後には、パフォーマンス改善のためのヒントも紹介します。
高度なICT取引システムの開発:オーダーブロックインジケーターでのシグナルの実装
この記事では、板情報(オーダーブックの数量)に基づいてオーダーブロックインジケーターを開発し、バッファを使用して最適化し、精度を向上させる方法を学習します。これにより、プロジェクトの現段階が終了し、リスク管理クラスとインジケーターによって生成されたシグナルを使用する取引ボットの実装を含む次の段階の準備が整います。
取引システムの構築(第1回):定量的なアプローチ
多くのトレーダーは短期的なパフォーマンスに基づいて戦略を評価し、利益を生むシステムであっても早い段階で手放してしまうことがよくあります。しかし、長期的な収益性は、最適化された勝率とリスクリワードレシオ(RRR: Reward-to-Risk Ratio)によって形成されるポジティブな期待値、そして規律あるポジションサイジングに依存しています。これらの原則は、バックテストの結果をもとにPythonでモンテカルロシミュレーションをおこなうことで検証することができ、戦略が時間の経過とともに堅牢であるか、もしくは破綻する可能性が高いかを評価するうえで役立ちます。
人工藻類アルゴリズム(AAA)
本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。
MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装
この記事では、リアルタイムのニュース更新機能を実装することで、経済指標カレンダーダッシュボードを強化し、市場情報を常に最新かつ実用的な状態に保ちます。MQL5におけるライブデータ取得技術を統合し、ダッシュボード上のイベントを継続的に更新することで、インターフェイスの応答性を向上させます。このアップデートにより、ダッシュボードから最新の経済ニュースに直接アクセスでき、最新データに基づいて取引判断を最適化できるようになります。
MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析(2) - 加重投票方策
本記事では、アンサンブル内で最適な戦略数を決定することがどれほど複雑な課題であるか、その解決がMetaTrader 5の遺伝的アルゴリズム最適化ツールを用いることで容易になるかを検討します。さらに、バックテストおよび最適化の高速化を目的として、MQL5クラウドも主要なリソースとして活用します。これらの議論を通じて、初期のアンサンブル結果に基づき、取引戦略を評価し、改善するための統計モデルを開発するための基盤を整えることを目的としています。
取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成
本記事では、取引チャート上で高品質な画像スケーリングを実現するために、双三次補間(バイキュービック補間)を使用した動的なMQL5グラフィカルインターフェイスについて解説します。カスタムオフセットによる動的な中央配置やコーナーアンカーなど、柔軟なポジショニングオプションも紹介します。
MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築
本記事では、MQL5で多時間軸スキャナーダッシュボードを構築し、リアルタイムの取引シグナルを表示する方法を解説します。インタラクティブなグリッドインターフェースの設計、複数のインジケーターによるシグナル計算の実装、そしてクローズボタンの追加を計画しています。記事はバックテストと戦略的取引の利点で締めくくられます。
MQL5での取引戦略の自動化(第33回):プライスアクションに基づくシャークハーモニックパターンシステムの作成
本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のシャークハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するシャークハーモニックパターンシステムを開発します。また、X-A-B-C-Dパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的フィードバックでトレーダーの洞察力を高めます。
MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入
この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。
動物移動最適化(AMO)アルゴリズム
この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。
知っておくべきMQL5ウィザードのテクニック(第69回):SARとRVIのパターンの使用
パラボリックSAR (SAR)と相対活力指数(RVI)は、MQL5のエキスパートアドバイザー(EA)内で併用可能なもう一つのインジケーターペアです。このインジケーターペアは、これまでに取り上げたものと同様に補完的で、SARはトレンドを定義し、RVIはモメンタムを確認します。通常通り、MQL5ウィザードを使用してこのインジケーターペアリングを構築し、その可能性をテストします。
MQL5での取引戦略の自動化(第26回):複数ポジション取引のためのピンバーナンピンシステムの構築
本記事では、ピンバーを検出して取引を開始し、複数ポジションを管理するためのナンピン(難平、Averaging)戦略を用いたピンバーシステムをMQL5で開発します。さらに、トレーリングストップやブレークイーブン調整で強化し、リアルタイムでポジションと利益を監視できるダッシュボードも組み込みます。
MQL5経済指標カレンダーを使った取引(第5回):レスポンシブコントロールとフィルターボタンでダッシュボードを強化する
この記事では、ダッシュボードの制御を改善するために、通貨ペアフィルター、重要度レベル、時間フィルター、キャンセルオプションのボタンを作成します。これらのボタンは、ユーザーのアクションに動的に応答するようにプログラムされており、シームレスな操作を可能にします。また、ダッシュボードにリアルタイムの変更を反映するために、ユーザーの行動を自動化します。これにより、パネルの全体的な機能性、モビリティ、応答性が向上します。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略
本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング
この記事では、順伝播型(フィードフォワード)ニューラルネットワークの学習におけるレーベンバーグ・マルカートアルゴリズムの実装を紹介します。また、scikit-learn Pythonライブラリのアルゴリズムと性能比較もおこなっています。まずは、勾配降下法、モーメンタム付き勾配降下法、確率的勾配降下法などのより単純な学習法について簡単に触れます。
リスク管理(第2回):グラフィカルインターフェースでのロット計算の実装
本記事では、前回の記事で紹介した内容をさらに発展させ、MQL5の強力なグラフィカルコントロールライブラリを使って実際にGUIを作成する方法を解説します。ステップごとに、完全に動作するGUIを作る過程を追いながら、各メソッドの仕組みや役割、そしてその背後にある考え方についても丁寧に説明します。また、記事の最後には、作成したパネルをテストして、正しく機能することを確認します。
MQL5で自己最適化エキスパートアドバイザーを構築する(第9回):二重移動平均クロスオーバー
本記事では、二重移動平均クロスオーバー戦略の設計について説明します。この戦略では、上位時間足(例:日足、D1)のシグナルを参照して下位時間足(例:15分足、M15)でエントリーをおこない、ストップロスレベルは中間的リスク時間足(例:4時間足、H4)から算出します。システム定数やカスタム列挙型、トレンドフォローと平均回帰(ミーンリバージョン)モードに対応したロジックを導入し、モジュール化と将来的な遺伝的アルゴリズムによる最適化を重視しています。このアプローチにより、柔軟なエントリーとエグジットの条件を設定でき、下位時間足でのエントリーを高い時間足のトレンドに合わせることで、シグナルのラグを軽減し、取引タイミングを改善することを目指しています。
FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引
これは、FVG(Fair Value Gaps、フェアバリューギャップ)の発生の形成ロジックや、ブレーカーおよびMSS(Market Structure Shifts、市場構造の変化)を用いた自動取引について解説することを目的として執筆した記事です。
MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善
この記事では、MQL5の多時間軸スキャナーダッシュボードを、移動可能および切り替え機能付きにアップグレードします。ダッシュボードをドラッグできるようにし、画面の使用効率を高めるために最小化/最大化オプションを追加します。これらの機能強化を実装し、テストすることで、より柔軟な取引環境を実現します。
MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成
本記事では、MQL5を用いて複数の通貨ペアをリアルタイムで監視できるローリングティッカーテープを開発します。Bid価格(買値)、スプレッド、日次変化率をスクロール表示し、価格変動やトレンドを効果的に強調するために、フォント、色、スクロール速度をカスタマイズ可能にします。
ダイナミックマルチペアEAの形成(第4回):ボラティリティとリスク調整
このフェーズでは、マルチペアEAを微調整し、ATRなどのボラティリティ指標を活用してリアルタイムで取引サイズとリスクを調整します。これにより、一貫性の向上、資金保護、そしてさまざまな市場状況下でのパフォーマンス改善を実現します。
MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化
本記事では、直感的なニュースナビゲーションを実現する動的なスクロールバーを追加してMQL5経済指標カレンダーを強化します。シームレスなイベント表示と効率的な更新を保証します。テストを通じて、レスポンシブなスクロールバーと洗練されたダッシュボードを検証します。
MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader
本記事では、最小二乗法を用いてサポートおよびレジスタンスのトレンドラインを検出し、価格がこれらのラインに触れた際に動的な売買シグナルを生成するTrendline Traderプログラムを開発します。また、生成されたシグナルに基づきポジションをオープンする仕組みも構築します。
MQL5での取引戦略の自動化(第36回):リテストとインパルスモデルによる需給取引
本記事では、MQL5を用いて、需給(S&D: Supply and Demand)取引システムを構築します。本システムは、レンジ相場による需給ゾーンの特定、インパルスムーブによるゾーンの検証、そしてトレンド確認を伴うリテストでのエントリーをおこないます。さらに、カスタマイズ可能なリスク管理パラメータやトレーリングストップをサポートし、動的なラベルやカラー表示によるゾーンの可視化も実装しています。
MetaTrader 5機械学習の設計図(第2回):機械学習のための金融データのラベリング
本連載「機械学習の設計図」の第2回では、単純なラベル付けがなぜモデルを誤った方向に導いてしまうのか、そしてトリプルバリア法やトレンドスキャン法といった高度な手法をどのように適用すれば、リスクを考慮した堅牢なターゲットを定義できるのかをご紹介します。計算負荷の高いこれらの手法を最適化する実践的なPythonコード例も多数取り上げ、市場のノイズに満ちたデータを、現実の取引環境に即した信頼性の高いラベルへと変換する方法を詳しく解説します。
取引システムの構築(第4回):ランダム決済が取引の期待値に与える影響
多くのトレーダーは、エントリーの基準には忠実であっても、取引管理で苦労する状況を経験しています。正しいセットアップであっても、取引がテイクプロフィット(利確)やストップロス(損切り)の水準に達する前にパニックで決済してしまうといった感情的な判断は、資産曲線を下向きにする原因となります。では、トレーダーはこの問題をどう克服し、結果を改善できるのでしょうか。本記事では、ランダムな勝率を用いてこの問題を検証し、モンテカルロシミュレーションを通じて、トレーダーがオリジナルの目標に到達する前に合理的な水準で利益を確定することで戦略を洗練させる方法を示します。
MQL5入門(第23回):オープニングレンジブレイクアウト戦略の自動化
この記事では、MQL5でオープニングレンジブレイクアウト(ORB)エキスパートアドバイザー(EA)を作成する方法を解説します。EAが市場の初期レンジからのブレイクアウトをどのように検知し、それに応じてポジションを建てるかを説明します。また、建てるポジションの数を制御したり、指定した時間で自動的に取引を停止する方法についても学べます。
MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム
本記事では、ロンドン市場開場前のレンジブレイクアウトを検出し、任意の取引タイプおよびリスク設定に基づいてペンディング注文(指値・逆指値注文)を自動で発注する「ロンドンセッションブレイクアウトシステム」を開発します。トレーリングストップ、リスクリワード比率、最大ドローダウン制限、そしてリアルタイム監視と管理をおこなうためのコントロールパネルなどの機能も組み込みます。
MQL5での取引戦略の自動化(第32回):プライスアクションに基づくファイブドライブハーモニックパターンシステムの作成
本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のファイブドライブ(5-0)ハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するファイブドライブパターンシステムを開発します。また、A-B-C-D-E-Fパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的フィードバックでトレーダーの洞察力を高めます。
MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果
本記事では、MQL5経済カレンダーを強化し、ドラッグ可能なダッシュボードを導入してインターフェースの位置を自由に変更できるようにし、チャートの視認性を高めます。また、ボタンのホバー効果を実装して操作性を高め、動的に変化するスクロールバーによってスムーズなナビゲーションを実現します。
MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード
本記事では、MQL5で動的なホログラフィックダッシュボードを作成し、RSIやボラティリティアラート、ソートオプションを使用して銘柄と時間足を監視します。さらに、パルスアニメーション、インタラクティブボタン、ホログラフィック効果を追加して、ツールを視覚的に魅力的で反応の良いものにします。
MQL5入門(第20回):ハーモニックパターンの基礎
本記事では、ハーモニックパターンの基本、構造、そして取引での応用方法について解説します。フィボナッチリトレースメントやフィボナッチエクステンションについて学び、MQL5におけるハーモニックパターン検出の実装方法を理解することで、より高度な取引ツールやエキスパートアドバイザー(EA)を構築するための基礎を築くことができます。
初心者からエキスパートへ:NFP発表後の市場取引におけるフィボナッチ戦略の実装
金融市場において、リトレースメントの法則は最も否定しがたい力の一つです。価格は必ずリトレースするというのが経験則であり、大きな値動きにおいても、最小のティックパターンにおいても、ジグザグの形で現れることが多くあります。しかし、リトレースメントのパターン自体は固定されておらず、不確実で予測が難しいのが現状です。この不確実性があるため、トレーダーは複数のフィボナッチレベルを参照し、それぞれの影響力を確率的に考慮します。本記事では、主要経済指標発表後の短期売買における課題に対処するため、フィボナッチ手法を応用した精緻な戦略を紹介します。リトレースメントの原則とイベントドリブンの市場動向を組み合わせることで、より信頼性の高いエントリーおよびエグジットの機会を見出すことを目指します。ディスカッションに参加し、フィボナッチをイベント後取引にどのように適応できるかをご覧ください。
循環単為生殖アルゴリズム(CPA)
本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。