MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
ストキャスティクスによる取引システムの設計方法を学ぶ
ストキャスティクスによる取引システムの設計方法を学ぶ

ストキャスティクスによる取引システムの設計方法を学ぶ

この記事では、学習シリーズを継続します。今回は、基本的な知識の新しいブロックを構築するために、最も人気があり、便利な指標の1つであるストキャスティックスオシレータ指標を使用して取引システムを設計する方法を学びます。
DoEasyライブラリでのその他のクラス(第67部): チャットオブジェクトクラス
DoEasyライブラリでのその他のクラス(第67部): チャットオブジェクトクラス

DoEasyライブラリでのその他のクラス(第67部): チャットオブジェクトクラス

本稿では、(単一の取引製品チャートの)チャートオブジェクトクラスを作成し、MQL5シグナルオブジェクトのコレクションクラスを改善して、コレクションに格納されている各シグナルオブジェクトでリストの更新時にすべてのパラメータが更新されるようにします。
preview
自動で動くEAを作る(第08回):OnTradeTransaction

自動で動くEAを作る(第08回):OnTradeTransaction

今回は、受注システムに関する問題を迅速かつ効率的に処理するためのイベント処理システムの使用方法について紹介します。このシステムにより、EAは必要なデータを常に検索する必要がなくなり、より速く動作するようになります。
preview
一からの取引エキスパートアドバイザーの開発(第21部):新規受注システム(IV)

一からの取引エキスパートアドバイザーの開発(第21部):新規受注システム(IV)

まだ完成していないものの、ようやくビジュアルなシステムが動き出します。ここでは主な変更を完成します。かなりの数になりますが、どれも必要なものばかりです。全体的にはなかなか面白いものになりそうです。
MQL5 Cookbook:指定の基準に基づく Expert Advisor 最適化結果の保存方法
MQL5 Cookbook:指定の基準に基づく Expert Advisor 最適化結果の保存方法

MQL5 Cookbook:指定の基準に基づく Expert Advisor 最適化結果の保存方法

MQL5 プログラミングに関するシリーズを続けます。今回、われわれは Expert Advisor のパラメータ最適化の最中に各最適化パスの結果を取得する方法を見ていきます。外部パラメータに指定された条件が満たされれば対応するパス値がファイルに書き込まれることを確認できるよう実装が行われます。検証値以外にもそのような結果をもたらしたパラメータも保存します。
オーダーストラテジー多目的Expert Advisor
オーダーストラテジー多目的Expert Advisor

オーダーストラテジー多目的Expert Advisor

この記事では、未処理のオーダーを有効に活用するストラテジーや、それを表すためのメタ言語やそれに基づき動作する多目的ExpertAdvisorを中心に見ていきます。
アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール
アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール

アルゴリズムトレードにおける Kohonen ニューラルネットワークの実用的利用 パートI ツール

本稿では、MetaTrader5 で Kohonen マップを使用します。 改善および拡張されたクラスは、アプリケーションタスクを解決するためのツールになります。
初めてのお客様へのアドバイス
初めてのお客様へのアドバイス

初めてのお客様へのアドバイス

有名人の格言ではよくこう言われます。「失敗を恐れる者はなにもなしえない。」怠慢自体が誤りであることを認めなければ、この言葉を語るのは難しいでしょう。しかし、将来の過ちを最小にするために過去の過ち(自分自身または他者の)を分析することは常に可能です。これから、同じ名前のサービスにおけるジョブ実行中に再発生可能性な状況を検証していこうと思います。
preview
シンプルな平均回帰取引戦略

シンプルな平均回帰取引戦略

平均回帰とは、トレーダーが価格が何らかの形の均衡に戻ることを期待する逆張り取引の一種で、通常は平均値または別の中心的傾向の統計によって測定されます。
preview
MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

この記事は、MQL5でエキスパートアドバイザー(EA)を構築するための包括的な、究極の初心者ガイドです。擬似コードを使用してEAを構築し、AIが生成したコードのパワーを活用する方法をステップごとに学びましょう。アルゴリズム取引が初めての方にも、スキルアップを目指す方にも、このガイドは効果的なEAを作成するための明確な道筋を提供します。
最適化数点のシンプルな考え
最適化数点のシンプルな考え

最適化数点のシンプルな考え

最適化のプロセスにはコンピュータや MQL5 クラウドネットワーク検証エージェントのリソースも大量に必要とします。本稿では作業の促進とMetaTrader 5 ストラテジーテスタの改良に利用する簡単な考えをいくつか取り上げます。こういったアイデアはドキュメンテーション、フォーラム、記事から得ました。
preview
ニューラルネットワークの実験(第5回):ニューラルネットワークに渡すための入力の正規化

ニューラルネットワークの実験(第5回):ニューラルネットワークに渡すための入力の正規化

ニューラルネットワークはトレーダーのツールキットの究極のツールです。この仮定が正しいかどうかを確認してみましょう。MetaTrader 5は、取引でニューラルネットワークを使用するための自立した媒体としてアプローチされています。簡単な説明が記載されています。
preview
ニューラルネットワークが簡単に(第13回): Batch Normalization

ニューラルネットワークが簡単に(第13回): Batch Normalization

前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。
preview
MQL5入門(第1部):アルゴリズム取引入門ガイド

MQL5入門(第1部):アルゴリズム取引入門ガイド

この初心者向けMQL5プログラミングガイドで、魅力的なアルゴリズム取引の世界へ飛び込みましょう。MetaTrader 5を動かす言語であるMQL5のエッセンスを発見し、自動売買の世界を解明します。基本を理解することからコーディングの第一歩を踏み出すことまで、この記事はプログラミングの知識がなくてもアルゴリズム取引の可能性を解き放つ鍵となります。MQL5のエキサイティングな宇宙で、一緒に、シンプルさと洗練が出会う旅に出ましょう。
preview
エキスパートアドバイザーが失敗する理由の分析

エキスパートアドバイザーが失敗する理由の分析

この記事では、通貨データの分析を示して、エキスパートアドバイザーが特定の時間領域で良好なパフォーマンスを示し他の領域でパフォーマンスが低下する理由をよりよく理解します。
トレーダーの作業における統計的分布の役割
トレーダーの作業における統計的分布の役割

トレーダーの作業における統計的分布の役割

本稿は、理論的統計的分布に連携するクラスについて述べた拙著『MQL5 における投擲的可能性』の続編です。われわれには理論的基盤があるので、現実のデータ設定に進み、こ基盤を情報的に利用していきたいと思います。
より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと
より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと

より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと

この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。
preview
知っておくべきMQL5ウィザードのテクニック(第05回):マルコフ連鎖

知っておくべきMQL5ウィザードのテクニック(第05回):マルコフ連鎖

マルコフ連鎖は、金融をはじめとする様々な分野で、時系列データのモデル化や予測に利用できる強力な数学的ツールです。金融の時系列モデル化や予測では、株価や為替レートなど、金融資産の時間的変化をモデル化するためにマルコフ連鎖がよく使われます。マルコフ連鎖モデルの大きな利点の1つは、そのシンプルさと使いやすさにあります。
preview
さまざまな移動平均タイプをテストして、それらがどの程度洞察力に富むかを確認する

さまざまな移動平均タイプをテストして、それらがどの程度洞察力に富むかを確認する

多くのトレーダーにとって移動平均指標が重要であることは周知の事実です。取引に役立つ移動平均タイプは他にもあります。この記事ではこれらのタイプを特定し、それぞれのタイプと最も人気のある単純移動平均タイプを簡単に比較して、どれが最良の結果を示すことができるかを確認します。
preview
トレーダーに優しい損切りと利食い

トレーダーに優しい損切りと利食い

損切り(ストップロス)と利食い(テイクプロフィット)は取引結果に大きな響を与えます。この記事では、最適な逆指値注文の値を見つけるためのいくつかの方法を見ていきます。
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス
クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

この記事では、クロスプラットフォームのEAについて扱っています。主にクラス CExpertAdvisor と CExpertAdvisors は、この記事で説明した他のすべてのコンポーネントのコンテナとして機能します。
preview
ニューラルネットワークが簡単に(第12回): ドロップアウト

ニューラルネットワークが簡単に(第12回): ドロップアウト

ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。
preview
ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算

ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算

ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。
preview
知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析

知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析

今日のトレーダーは哲学者であり、ほとんどの場合(意識的かどうかにかかわらず...)新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。トレーダーの時間とミスを避ける必要性は明らかに重視されます。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。
preview
自動で動くEAを作る(第10回):自動化(II)

自動で動くEAを作る(第10回):自動化(II)

自動化は、そのスケジュールを制御できなければ意味がありません。1日24時間働く効率的な労働者はいません。しかし、多くの人は、自動化されたシステムは24時間稼働するべきだと考えています。しかし、EAの稼働時間範囲を設定する手段を持つことは常に良いことです。この記事では、このような時間範囲を適切に設定する方法を検討します。
自己適応アルゴリズムの開発(第II部): 効率の向上
自己適応アルゴリズムの開発(第II部): 効率の向上

自己適応アルゴリズムの開発(第II部): 効率の向上

この記事では、以前に作成したアルゴリズムの柔軟性を向上させることでトピックの開発を続けます。アルゴリズムは、分析期間内のローソク足の数の増加または上昇/下降ローソク足超過率のしきい値の増加によって、より安定しました。分析のためにより大きなサンプルサイズを設定するかより高いローソク足の超過率を設定して、妥協する必要がありました。
preview
ニューラルネットワークが簡単に(第4回): リカレントネットワーク

ニューラルネットワークが簡単に(第4回): リカレントネットワーク

これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。
DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント
DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント

DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント

本稿では、いくつかのチャートオブジェクトイベント(銘柄チャートとチャートサブウィンドウの追加/削除、およびチャートウィンドウの指標の追加/削除/変更)を追跡する機能を作成します。
preview
パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。
運動継続モデル-チャート上での検索と実行統計
運動継続モデル-チャート上での検索と実行統計

運動継続モデル-チャート上での検索と実行統計

この記事では、運動継続モデルの1つをプログラムによって定義します。 この主なアイデアは、2つの波の定義です(メインと補正) 極値点については、フラクタルだけでなく、 "潜在的な " フラクタル-まだフラクタルとして形成されていない極値点を適用します。
preview
フラクタルによる取引システムの設計方法を学ぶ

フラクタルによる取引システムの設計方法を学ぶ

これは、最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事です。フラクタル指標という新しい指標を学び、それを基にした取引システムを設計し、MetaTrader 5ターミナルで実行する方法について学びます。
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析

トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析

この記事では、トレードに適用される OLAP テクノロジを引き続き取り扱います。 最初の 2 つの記事で紹介した機能を拡張します。 今回は、クオートの運用分析について検討します。シェイプセレクタ 集計されたヒストリーデータに基づいて、トレード戦略に関する仮説を打ち出し、テストします。 この記事では、バーパターンとアダプティブトレードを研究するためのEAを紹介します。
MQL5.com フリーランス:開発者の収入源(インフォグラフィック)
MQL5.com フリーランス:開発者の収入源(インフォグラフィック)

MQL5.com フリーランス:開発者の収入源(インフォグラフィック)

「MQL5 フリーランスサービス」の4周年を記念して、これまでのサービス結果を示すインフォグラフィックを作成しました。数字は自らを語ります:現在まで合計約 $600,000 に相当する 10,000 を越える注文が実行されるかたわら、 3,000 人の顧客と 300 人の開発者がすでにこのサービスを利用しました。
preview
Volumesによる取引システムの設計方法を学ぶ

Volumesによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事です。今回は、Volumes指標について紹介します。出来高という概念は、金融市場の取引において非常に重要な要素の1つであり、注意を払う必要があります。この記事では、Volumes指標を使用した簡単な取引システムの設計方法について説明します。
preview
古典的戦略の再構築:原油

古典的戦略の再構築:原油

この記事では、教師あり機械学習アルゴリズムを活用することで、古典的な原油取引戦略を強化することを目的として、原油取引戦略を再検討します。ブレント原油価格とWTI原油価格のスプレッドに基づいて、将来のブレント原油価格を予測する最小二乗モデルを構築します。目標は、将来のブレント価格変動の先行指標を特定することです。
ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング
ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング

ソーシャルテクノロジースタートアップの構築 パート2: MQL5 REST クライアントのプログラミング

本稿パート1でご紹介した PHP ベースの Twitter の考え方を形にしましょう。の異なるパーツを SDSS 組み立てるのです。システムアーキテクチャのクライアント側において、HTTP を介してトレードシグナルを送信するために新しいMQL5 WebRequest() 関数に頼ります。
preview
MQL5でのグラフィカルパネルの作成を簡単に

MQL5でのグラフィカルパネルの作成を簡単に

この記事では、取引において最も価値があり役立つツールの1つであるグラフィカルパネルを作成する必要がある人に、シンプルで簡単なガイドを提供します。グラフィカルパネルは、取引に関するタスクを簡素化および容易にして、時間を節約し、気を散らすことなく取引プロセスそのものに集中するのに役立ちます。
preview
固定プライスアクションストップロスまたは固定RSI(スマートストップロス)

固定プライスアクションストップロスまたは固定RSI(スマートストップロス)

ストップロスは、取引における資金管理に関する主要なツールです。ストップロス、テイクプロフィット、ロットサイズを効果的に使用することで、トレーダーは取引の一貫性を改善し、全体的に収益性を高めることができます。ストップロスは優れたツールですが、使用時に課題に遭遇することがあります。主要なものはストップロスハントです。この記事では、取引でのストップロスハントを減らす方法と、従来のストップロスの使用法と比較して収益性を判断する方法について説明します。
preview
ニューラルネットワークが簡単に(第48回):Q関数値の過大評価を減らす方法

ニューラルネットワークが簡単に(第48回):Q関数値の過大評価を減らす方法

前回は、連続的な行動空間でモデルを学習できるDDPG法を紹介しました。しかし、他のQ学習法と同様、DDPGはQ関数値を過大評価しやすくなります。この問題によって、しばしば最適でない戦略でエージェントを訓練することになります。この記事では、前述の問題を克服するためのいくつかのアプローチを見ていきます。
ギャップ ー 収入戦略か50/50か?
ギャップ ー 収入戦略か50/50か?

ギャップ ー 収入戦略か50/50か?

ギャップ現象の研究とは、前の時間枠の終値と次の時間の終値との間の有意差の状況や、日々のバーの向かう方向を分析することです。関数GetOpenFileNameのDLLシステムを使用します。