MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
三角裁定
三角裁定

三角裁定

本稿では、良く使われる三角裁定取引方法についてお話しします。ここでは、可能な限り主題を分析し、戦略のプラスおよびマイナス側面を考察し、既製のエキスパートアドバイザーコードを開発します。
マーケットでの公開前にトレードロボットに行うべき検査
マーケットでの公開前にトレードロボットに行うべき検査

マーケットでの公開前にトレードロボットに行うべき検査

マーケットの全ての製品は、均一な品質基準を確保する為に、公開前に事前の必須検査を受けます。この記事では、開発者が自分のテクニカルインディケータやトレードロボットで犯しがちなミスについてお話しします。また、マーケットへ提出する前の、製品の自己テストの方法もご紹介します。
1. テストメソッド1トレンドとレンジ戦略の組み合わせ
1. テストメソッド1トレンドとレンジ戦略の組み合わせ

1. テストメソッド1トレンドとレンジ戦略の組み合わせ

トレード戦略には多くのものがあります。 トレードのために、ある戦略はトレンドを探し、またある戦略はレンジ価格変動の範囲を定義します。 この2つのアプローチを組み合わせて収益性を高めることは可能でしょうか。
「タートルスープ」トレードシステムと ' タートル スープ プラス一 '
「タートルスープ」トレードシステムと ' タートル スープ プラス一 '

「タートルスープ」トレードシステムと ' タートル スープ プラス一 '

この記事では、2つのトレードシステム「タートルスープ」と「タートル スープ プラスワン'のルールについて扱います。リンダ ・ ブラッドフォード ・ ラシュキ と ローレンス a. コナーズによる 高確率短期のトレード戦略です。この戦略は、かなり人気があります。15~20年間の相場の動きに基づいてを開発したものです。
『のるかそるか』の Forex 戦略
『のるかそるか』の Forex 戦略

『のるかそるか』の Forex 戦略

本稿の目的は『のるかそるか』の賭博原理を取り入れたもっともシンプルなトレーディング戦略を作成することです。収益性のある Expert Advisor を作成したいのではありません。目標は初期デポジットを可能な限り最高の確率で数倍に増やすことです。ForEx でジャックポットを当てること、またテクニカル分析についてなにも解らずインディケータを一つも使わずにすべてを失うことは可能でしょうか?
ニューラル ネットワーク: EAの自己最適化
ニューラル ネットワーク: EAの自己最適化

ニューラル ネットワーク: EAの自己最適化

ポジションを最適化し、コードのコマンドに従って定期的に条件を終了するEAを開発します。ニューラル ネットワーク (多層パーセプトロン) を分析し、戦略を実現するためのモジュールの形式で実装します。毎月 (毎週、毎日、または毎時) ニューラル ネットワークを最適化する EAを作成します。したがって、自己最適化 EA を開発します。
手動取引のサポーターを作成する
手動取引のサポーターを作成する

手動取引のサポーターを作成する

近年、為替市場の為のトレードロボットの数は、雪だるま式に増えています。これらのトレードロボットの中には、様々な概念や戦略がありますが、負けない人工知能の作成は誰も成し遂げていません。その為、多くのトレーダーは手動取引を支持しています。しかし、このようなスペシャリストの為に、トレードパネルと呼ばれるロボットアシスタントが作成されています。この記事では、トレードパネルの作成例を『ゼロから』ご紹介していきます。
相場パターンを見つけるための計量的アプローチ:自己相関、ヒートマップ、散布図
相場パターンを見つけるための計量的アプローチ:自己相関、ヒートマップ、散布図

相場パターンを見つけるための計量的アプローチ:自己相関、ヒートマップ、散布図

この記事では、季節的特徴の拡張である自己相関ヒートマップと散布図を紹介します。 この記事の目的は、"マーケットメモリ"が季節的な性質を持ち、任意のオーダーの増分の最大相関によって表現されることを示すものです。
MetaTrader 5のマルチ通貨モードの実行
MetaTrader 5のマルチ通貨モードの実行

MetaTrader 5のマルチ通貨モードの実行

長い間、マルチ通貨分析やマルチ通貨トレーディングは人々の関心の的でした。完全なマルチ通貨システムを達成する機会は、MetaTrader5とMQL5プログラミング言語のリリースによりようやく可能になりました。この記事では、複数のシンボルにおけるすべてのティックを処理し分析する方法を紹介します。例として、USDドルインデックスのマルチ通貨RSIインジケーターを見てみます。
エキスパートアドバイザの自己最適化:進化的遺伝的アルゴリズム
エキスパートアドバイザの自己最適化:進化的遺伝的アルゴリズム

エキスパートアドバイザの自己最適化:進化的遺伝的アルゴリズム

この記事では、進化的アルゴリズムにある主要な原理と、その多様性および特徴について検証します。実験を使用した簡単なエキスパートアドバイザの例では、最適化が私達の取引システムに何をもたらすかを見ていきます。遺伝的、進化的、またその他のタイプの最適化を実装するプログラムのセットを検証し、取引システムのパラメータの最適化や予測変数のセットの最適化時の適用例をご紹介します。
エラー 146 (「トレードコンテキスト ビジー」) と、その対処方法
エラー 146 (「トレードコンテキスト ビジー」) と、その対処方法

エラー 146 (「トレードコンテキスト ビジー」) と、その対処方法

この記事では、MT4において複数のEAの衝突をさける方法を扱います。ターミナルの操作、MQL4の基本的な使い方がわかる人にとって、役に立つでしょう。
ニューラルネットワーク:理論~実践
ニューラルネットワーク:理論~実践

ニューラルネットワーク:理論~実践

今日、トレーダーはだれしもニューラルネットワークについて聞いたことがあり、それを使うのがかっこいいということがわかっています。多数の人がニューラルネットワークを利用してディールを行える人はスーパーヒューマンだと思っています。本稿ではニューラルネットワークのアーキテクチャを説明し、アプリケーションについて記述し、実用例を示していこうと思います。
preview
MQL5を使用してトレンドとチャートパターンを検出する方法

MQL5を使用してトレンドとチャートパターンを検出する方法

この記事では、トレンド(上昇トレンド、下降トレンド、横ばい)やチャートパターン(ダブルトップ、ダブルボトム)などの値動きのパターンをMQL5によって自動的に検出する方法を提供します。
「新規バー」イベントハンドラ
「新規バー」イベントハンドラ

「新規バー」イベントハンドラ

MQL5プログラミング言語はまったく新しいレベルで問題解決をする能力があります。 そういったタスクにして、もオブジェクト指向プログラミングのおかげでそれはすでに高いレベルに引きあげることができるのです。本稿では、かなり力強い多目的ツールに変換されたチャートの新規バーチェックの特にシンプルな例を取り上げます。どんなツールでしょうか?本稿でみつけてください。
MQL5のExpert Advisorsのテストと最適化を行うためのガイド
MQL5のExpert Advisorsのテストと最適化を行うためのガイド

MQL5のExpert Advisorsのテストと最適化を行うためのガイド

ここでは、コードエラーを見つけ解決するための段階的な手順について説明します。またExpert Advisor(以下EA)への入力パラメータのテストと最適化の手順についても説明します。Meta Trader 5のクライアント端末のStrategy Testerの使い方がわかれば、ご自身のEAに最も適したシンボルや入力パラメータセットを見つけることができるようになります。
マーケット理論
マーケット理論

マーケット理論

現在のところ、どの商品市場や相場にも適応可能で、ミクロでもマクロでも使うことができるような完璧な相場理論というものは存在していません。この記事では、利益分析に基づいた新しい相場理論のエッセンスを紹介し、現在の価格変化とメカニズムの原則を明らかにします。実際の価格上でコントロール可能なバーチャルプライスの連鎖を形成することにより、最適な値を見つけることができます。相場の形成と変化のメカニズムも紹介します。
トレーリングストップを採用した利益を生み出すアルゴリズム
トレーリングストップを採用した利益を生み出すアルゴリズム

トレーリングストップを採用した利益を生み出すアルゴリズム

この記事では、異なるエントリーとトレーリングストップを使ったエグジットで利益を生むアルゴリズムの可能性について学んでいきたいと思います。エントリーのタイプとして、ランダムエントリーとリバースエントリーを使用します。使う逆指値注文はトレーリングストップとトレーリングテイクです。この記事では、年間約30%の利益を生み出すアルゴリズムを紹介します。
フィッシャートランスフォームの適用とMetaTrader5の市場分析に対するフィッシャートランスフォーム
フィッシャートランスフォームの適用とMetaTrader5の市場分析に対するフィッシャートランスフォーム

フィッシャートランスフォームの適用とMetaTrader5の市場分析に対するフィッシャートランスフォーム

市場サイクルの確率密度関数(PDF)がガウス性では残らず、むしろ正弦波のPDGとして維持され、大半のインジケーターがその市場サイクルPDFがガウス性であると想定しています。その解決策は、フィッシャートランスフォームを使用することです。フィッシャートランスフォームは、いかなる波形のPDFをガウス性に変換します。この記事は、フィッシャートランスフォームの裏にある数学と、対するフィッシャートランスフォーム、トレーディングへの適用例を紹介します。反対のフィッシャートランスフォームに基づく所有のトレーディングシグナルモジュールが紹介され、評価されます。
エキスパートアドバイザーの注文と希望の結果の取得方法
エキスパートアドバイザーの注文と希望の結果の取得方法

エキスパートアドバイザーの注文と希望の結果の取得方法

どのように正しく必要条件の明記を記載するのでしょうか?エキスパートアドバイザーやインジケーターを注文する際にプログラマーに期待すべき点と、期待すべきではない点は何でしょうか?やりとりを記録するにはどうすべきで、何に対して特に注意すべきでしょうか?この記事は、これらの質問や、その他多くの人にとって明白ではない様々な質問に対する答えを提供します。
古典的な隠れたダイバージェンスを解釈する新しいアプローチ第2部
古典的な隠れたダイバージェンスを解釈する新しいアプローチ第2部

古典的な隠れたダイバージェンスを解釈する新しいアプローチ第2部

本稿では、さまざまな指標のレギュラーダイバージェンスと効率性について批判的に検討します。さらに、分析の精度を高めるためのフィルタリングオプションと、非標準ソリューション機能の説明が含まれています。 その結果、技術的なタスクを解決するための新しいツールを作成します。
ディープニューラルネットワーク(その3)サンプル選択と次元削減
ディープニューラルネットワーク(その3)サンプル選択と次元削減

ディープニューラルネットワーク(その3)サンプル選択と次元削減

本稿は、ディープニューラルネットワークに関する一連の記事の続きです。ここでは、ニューラルネットワークの訓練データの準備に当たってのサンプルの選択(ノイズ除去)、入力データの次元数の削減、及びデータセットの訓練/検証/テストセットへの分割を検討します。
CSSセレクタを使用した HTML ページからの構造化データの抽出
CSSセレクタを使用した HTML ページからの構造化データの抽出

CSSセレクタを使用した HTML ページからの構造化データの抽出

この記事では、CSS セレクタに基づいて HTML ドキュメントからデータを分析および変換するための汎用的な方法について説明します。 トレードレポート、テスターレポート、お気に入りの経済カレンダー、パブリックシグナル、アカウント監視、その他のオンラインクオートソースは MQL から直接利用可能になります。
MetaTrader 5での並列計算
MetaTrader 5での並列計算

MetaTrader 5での並列計算

人類の歴史において時間は高価値であり、われわれはそれを無駄に費やさないよう努力しています。本稿では、マルチ コア プロセッサのコンピュータをご使用の場合、お手元のExpert Advisor の動作スピードを上げる方法について述べていきます。また、提案のメソッド実装には MQL5以外の言語知識は必要とされません。
トレーディングにおけるOLAPの適用(その4)。テスターレポートの定量的・視覚的分析
トレーディングにおけるOLAPの適用(その4)。テスターレポートの定量的・視覚的分析

トレーディングにおけるOLAPの適用(その4)。テスターレポートの定量的・視覚的分析

この記事では、シングルパスや最適化結果に関連するテスターレポートのOLAP分析のための基本的なツールを提供しています。 このツールは標準フォーマットのファイル(tstとopt)を扱うことができ、グラフィカルなインターフェイスも提供します。 最後にMQLのソースコードを添付します。
MQL5 マーケットがトレーディング戦略およびテクニカルインディケータを販売するのにベストな場所である理由
MQL5 マーケットがトレーディング戦略およびテクニカルインディケータを販売するのにベストな場所である理由

MQL5 マーケットがトレーディング戦略およびテクニカルインディケータを販売するのにベストな場所である理由

MQL5.community マーケットは Expert Advisors 開発者に対してすでに何千人という潜在的購入者のいるできあがったマーケットを提供します。これは売買ロボットやテクニカルインディケータを販売するのにはベストな場所です。
MQL5におけるトレーディング用コントロールパネルの作成
MQL5におけるトレーディング用コントロールパネルの作成

MQL5におけるトレーディング用コントロールパネルの作成

この記事は、MQL5のコントロールパネルの開発における問題を取り扱っています。インターフェイスは、イベントハンドリングによって管理されています。加えて、管理の柔軟なセットアップ方法が複数あります。コントロールパネルは、ポジションを扱い、また、設定、修正、削除や、未決注文も管理します。
preview
自動で動くEAを作る(第02回):コードを始める

自動で動くEAを作る(第02回):コードを始める

今日は、自動モードでシンプルかつ安全に動作するエキスパートアドバイザー(EA)を作成する方法を紹介します。前回は、自動売買をおこなうEAの作成に進む前に、誰もが理解しておくべき最初のステップについて説明しました。概念と構造が検討されました。
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する

ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する

この記事では、ビジュアルストラテジービルダーを紹介します。 ユーザーがプログラミングせずにトレードロボットやユーティリティを作成する方法について紹介します。 作成されたEAは、完全に機能し、ストラテジーテスターでテストすることができます。また、クラウドで最適化またはリアルタイムチャートでライブ実行することも可能です。
トレーダーのリスクを低減するには
トレーダーのリスクを低減するには

トレーダーのリスクを低減するには

金融市場における取引には広範囲のリスクがつきもので、これらは取引システムのアルゴリズムで考慮されるべきです。そのようなリスクを低減することは、取引で利益を得るために最も重要な課題です。
メタトレーダー5の EA の自動最適化
メタトレーダー5の EA の自動最適化

メタトレーダー5の EA の自動最適化

この記事では、MetaTrader5での自己最適化メカニズムの実装について説明します。
強化学習におけるモンテカルロ法の応用
強化学習におけるモンテカルロ法の応用

強化学習におけるモンテカルロ法の応用

自己学習を行うEAを作成するためのReinforcement learningの適用。前回の記事では、Random Decision Forestアルゴリズムを学び、Reinforcement learning(強化学習)に基づく簡単な自己学習EAを作成しました。このアプローチの主な利点は、取引アルゴリズムを書くことの単純さと『学習」の高速性でした。強化学習(以下、単にRL)は、どのEAにも簡単に組み込むことができ、最適化のスピードを上げられます。
ボリンジャーバンドによる取引システムの設計方法を学ぶ
ボリンジャーバンドによる取引システムの設計方法を学ぶ

ボリンジャーバンドによる取引システムの設計方法を学ぶ

この記事では、取引の世界で最も人気のある指標の1つであるボリンジャーバンドについて学びます。テクニカル分析を検討し、ボリンジャーバンド指標に基づいてアルゴリズム取引システムを設計する方法を確認します。
自己適応アルゴリズムの開発(第I部):基本的なパターンの検索
自己適応アルゴリズムの開発(第I部):基本的なパターンの検索

自己適応アルゴリズムの開発(第I部):基本的なパターンの検索

この連載では、ほとんどの市場要因を考慮した自己適応アルゴリズムの開発を示すとともに、これらの状況を体系化してロジックで説明し、取引活動で考慮に入れる方法を示します。非常に単純なアルゴリズムから始めて、徐々に理論を習得し、非常に複雑なプロジェクトに進化していきます。
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能性が考慮されます。
MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)
MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)

MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)

この記事では、MQL5 ベースのEAに対して Microsoft SQL server データベースサーバーを使用する方法について説明します。 DLL からの関数のインポートが使用します。 DLL は、Microsoft .NET プラットフォームと C# 言語を使用して作成します。 この記事で使用するメソッドは、マイナーな調整があり、MQL4で書かれているEAに適しています。
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法

マシンラーニング:サポートベクターマシンをトレーディングで利用する方法

「サポートベクターマシン」は生物情報学分野でこれまで長く利用され、複雑なデータセットを評価し、データ分類すに利用できる有用なパターンを抽出するため数学を利用しています。本稿はサポートベクターマシンとは何か、それがどのように役立つか、またなぜ複雑なパターンを抽出するのに便利かを考察します。そしてそれをマーケットに応用する方法、およびトレードを行う上で将来役立つであろう使用方法を調査します。また「サポートベクターマシン学習ツール」を使用し、読者のみなさんがご自身のトレーディングで実験することができる実用例を提供します。
MetaTrader 4でMQL5ウィザードの既製エキスパートアドバイザーが機能
MetaTrader 4でMQL5ウィザードの既製エキスパートアドバイザーが機能

MetaTrader 4でMQL5ウィザードの既製エキスパートアドバイザーが機能

本稿ではMetaTrader 4のためのMetaTrader 5取引環境の簡単なエミュレータについてお話しします。このエミュレータは標準ライブラリの取引クラスの移行と調整を実装するものです。その結果、MetaTrader 5ウィザードで生成されたエキスパートアドバイザーは、そのままMetaTrader 4でコンパイルして実行することができます。
preview
時間の取扱い(第1部):基本

時間の取扱い(第1部):基本

時間の処理、証券会社のオフセット、夏時間または冬時間への変更を簡素化および明確化する関数とコードスニペット。正確なタイミングは取引において重要な要素になることがあります。現在時刻でロンドンやニューヨークの証券取引所がすでに開いているかまだ開いていないか、外国為替取引の取引時間はいつ開始および終了するかなどです。手動で取引して生活しているトレーダーにとって、これは大きな問題ではありません。
MQL5ウィザード:トレーディングシグナル用モジュール作成方法
MQL5ウィザード:トレーディングシグナル用モジュール作成方法

MQL5ウィザード:トレーディングシグナル用モジュール作成方法

この記事は、価格のクロスオーバーと移動平均に関するシグナルの実行とともに、トレーディングシグナルクラスの記述方法、 MQL5ウィザードのトレーディングストラテジー生成プログラムへの挿入方法、MQL5ウィザードにおいて生成されるクラスの記述フォーマットやストラクチャーについて紹介します。
インジケーターへのエントリの解決
インジケーターへのエントリの解決

インジケーターへのエントリの解決

トレーダーにはさまざまな事態が発生します。 多くの場合、勝ちトレードは、負けトレードと照らし合わせながら、戦略を再構成することができます。 どちらの場合でも、既知のインジケーターとトレードを比較します。 この記事では、インジケーターを使ったトレードの比較方法を考察します。