MQL4とMQL5のプログラム記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
初級から中級へ:変数(III)

初級から中級へ:変数(III)

今日は、定義済みのMQL5言語変数と定数の使用方法を見ていきます。さらに、別の特殊なタイプの変数である関数を分析します。これらの変数を適切に操作する方法を知っているかどうかは、動作するアプリケーションと動作しないアプリケーションの違いを意味する場合があります。ここで紹介されている内容を理解するには、以前の記事で説明した内容を理解する必要があります。
preview
データサイエンスとML(第36回):偏った金融市場への対処

データサイエンスとML(第36回):偏った金融市場への対処

金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
preview
Metatrader 5のWebsockets — Windows APIを使用した非同期クライアント接続

Metatrader 5のWebsockets — Windows APIを使用した非同期クライアント接続

この記事では、MetaTraderプログラム向けに非同期のWebSocketクライアント接続を可能にするカスタムDLL(ダイナミックリンクライブラリ)の開発について解説します。
preview
初級から中級へ:変数(II)

初級から中級へ:変数(II)

今日は、static変数の取り扱いについて学びます。このメカニズムを使用する際に守らなければならないいくつかの推奨事項があるため、この問題は初心者やある程度の経験を持つプログラマーにとってしばしば混乱を招きます。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

MAとストキャスティクスを使用したDDPGに関する前回の記事に引き続き、今回は、DDPGの実装に欠かせない他の重要な強化学習クラスを検証していきます。主にPythonでコーディングしていますが、最終的には訓練済みネットワークをONNX形式でエクスポートし、MQL5に組み込んでウィザードで構築したエキスパートアドバイザー(EA)のリソースとして統合します。
preview
リプレイシステムの開発(第65回)サービスの再生(VI)

リプレイシステムの開発(第65回)サービスの再生(VI)

この記事では、リプレイ/シミュレーションアプリケーションと併用する際に発生するマウスポインタの問題について、その実装と解決方法を解説します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。
preview
MQL5とデータ処理パッケージの統合(第4回):ビッグデータの取り扱い

MQL5とデータ処理パッケージの統合(第4回):ビッグデータの取り扱い

今回は、MQL5と強力なデータ処理ツールを統合する高度なテクニックに焦点を当て、取引分析および意思決定を強化するためのビッグデータの効率的な活用方法を探ります。
preview
MQL5でのファイル操作の習得:基本的なI/OからカスタムCSVリーダーの構築まで

MQL5でのファイル操作の習得:基本的なI/OからカスタムCSVリーダーの構築まで

この記事では、取引ログ、CSVの処理、外部データの統合など、MQL5における基本的なファイル操作テクニックに焦点を当て、概念的な理解と実践的なコーディングガイドの両面から解説します。読者は、カスタムCSVインポート用のクラスを段階的に構築する方法を学び、実践的なスキルを身につけることができます。
preview
JSONをマスターする:MQL5で独自のJSONリーダーをゼロから作成する

JSONをマスターする:MQL5で独自のJSONリーダーをゼロから作成する

オブジェクトと配列の処理、エラーチェック、シリアル化を備えたMQL5でカスタムJSONパーサーを作成する手順をステップバイステップで説明します。MetaTrader5でJSONを処理するためのこの柔軟なソリューションを使用して、取引ロジックと構造化データを橋渡しするための実用的な洞察を得ることができます。
preview
知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

強化学習において、リプレイバッファは特にDQNやSACのようなオフポリシーアルゴリズムにおいて重要な役割を果たします。これにより、メモリバッファのサンプリング処理が注目されます。たとえばSACのデフォルト設定では、このバッファからランダムにサンプルを取得しますが、Prioritized Experience Replay (PER)を用いることで、TDスコア(時間差分誤差)に基づいてサンプリングを調整することができます。本稿では、強化学習の意義を改めて確認し、いつものように交差検証ではなく、この仮説だけを検証する、ウィザードで組み立てたエキスパートアドバイザー(EA)を用いて考察します。
preview
MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

本記事では、MQL5経済指標カレンダーを活用して、ユーザー定義のフィルターと時間オフセットに基づいた自動取引エントリーを実装します。対象となる経済指標イベントを検出し、予想値と前回値の比較により、買うか売るかの判断を下します。動的なカウントダウンタイマーは、ニュース公開までの残り時間を表示し、取引後には自動的にリセットされます。
preview
タブーサーチ(TS)

タブーサーチ(TS)

この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。
preview
Connexus Observer(第8回):リクエストObserverの追加

Connexus Observer(第8回):リクエストObserverの追加

連載「Connexusライブラリ」の最終回では、Observerパターンの実装に加え、ファイルパスやメソッド名に関する重要なリファクタリングについて解説します。本連載を通じて、複雑なアプリケーションにおけるHTTP通信を簡素化することを目的としたConnexusの開発全体を取り上げました。
preview
初級から中級へ:BREAK文とCONTINUE文

初級から中級へ:BREAK文とCONTINUE文

この記事では、ループ内でのRETURN、BREAK、CONTINUE文の使い方について解説します。ループの実行フローにおいて、これらの各文がどのような役割を果たすかを理解することは、より複雑なアプリケーションを扱う上で非常に重要です。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
プライスアクション分析ツールキットの開発(第17回):TrendLoom EAツール

プライスアクション分析ツールキットの開発(第17回):TrendLoom EAツール

プライスアクションを観察し、取引をおこなう立場から言うと、複数の時間枠でトレンドが確認された場合、その方向にトレンドが継続することがよくあります。ただし、トレンドがどれくらい続くかは一定ではなく、ポジションを長期で保有するのか、それともスキャルピングのような短期取引をおこなうのかといったトレーダーのスタイルによって異なります。トレンド確認に使用する時間枠の選択は非常に重要な役割を果たします。以下の記事では、ワンクリックや定期的な更新によって、複数の時間足にわたる全体的なトレンドを自動で分析できる便利なシステムを紹介しています。ぜひご覧ください。
preview
データサイエンスとML(第34回):時系列分解、株式市場を核心にまで分解

データサイエンスとML(第34回):時系列分解、株式市場を核心にまで分解

ノイズが多く、予測が難しいデータで溢れる世界では、意味のあるパターンを特定するのは困難です。この記事では、データをトレンド、季節パターン、ノイズといった主要な要素に分解する強力な分析手法「季節分解」について解説します。こうしてデータを分解することで、隠れた洞察を見つけ、より明確で解釈しやすい情報を得ることが可能になります。
preview
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
preview
既存のMQL5取引戦略へのAIモデルの統合

既存のMQL5取引戦略へのAIモデルの統合

このトピックでは、強化学習モデル(LSTMなど)や機械学習ベースの予測モデルのような訓練済みAIモデルを、既存のMQL5取引戦略に組み込むことに焦点を当てています。
preview
MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

この記事では、第1回で紹介したレジーム検出器を用いて、適応型のエキスパートアドバイザー(EA)、MarketRegimeEAを構築する方法を詳しく解説しています。このEAは、トレンド相場、レンジ相場、またはボラティリティの高い相場に応じて、取引戦略やリスクパラメータを自動的に切り替えます。実用的な最適化、移行時の処理、多時間枠インジケーターも含まれています。
preview
ニューラルネットワークの実践:ニューロンのスケッチ

ニューラルネットワークの実践:ニューロンのスケッチ

この記事では、基本的なニューロンを作ります。単純に見えるし、多くの人はこのコードをまったくつまらない無意味なものだと考えるかもしれませんが、このニューロンの単純なスケッチを楽しく勉強してほしいと思います。コードを修正することを恐れず、完全に理解することが目標です。
preview
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
preview
プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board

プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board

この記事では、元のQuarters Scriptを改良し、「Quarters Board」というツールを導入しています。これにより、コードを編集し直すことなく、チャート上でクォーターレベルを直接オン・オフできるようになります。特定のレベルを簡単に有効化・無効化できるほか、エキスパートアドバイザー(EA)はトレンド方向に関するコメントも提供し、市場の動きをより理解しやすくします。
preview
適応型社会行動最適化(ASBO):二段階の進化

適応型社会行動最適化(ASBO):二段階の進化

生物の社会的行動と、それが新しい数学モデルであるASBO(適応型社会的行動最適化)の開発に与える影響について、引き続き考察していきます。今回は、二段階の進化プロセスを詳しく分析し、アルゴリズムをテストした上で結論を導き出します。自然界において生物の集団が生存のために協力するのと同様に、ASBOも集団行動の原理を活用し、複雑な最適化問題を解決します。
preview
知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

ACオシレーター(アクセラレーターオシレーター、Accelerator Oscillator)は、価格のモメンタムの「速度」だけでなく、その「加速」を追跡する、ビル・ウィリアムズによって開発されたインジケーターの一つです。最近の記事で取り上げたオーサムオシレーター(AO)と非常によく似ていますが、単なるスピードではなく加速に重点を置くことで、遅延の影響を回避しようとしています。本記事では、毎回のようにこのオシレーターからどのようなパターンが得られるかを分析し、ウィザード形式で構築されたエキスパートアドバイザー(EA)を通じて、それらが実際の取引においてどのような意味を持ち得るかを検証します。
preview
MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。
preview
MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

この記事では、カスタムの平均足インジケーターをゼロから作成する方法を解説し、カスタムインジケーターをエキスパートアドバイザー(EA)に組み込む方法も紹介します。インジケーターの計算方法、取引実行ロジック、リスク管理の手法についても取り上げ、自動売買戦略の向上を目指します。
preview
ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ポートフォリオの分散化と最適化とは、複数の資産に戦略的に投資を分散しながら、リスク調整後のパフォーマンス指標に基づいてリターンを最大化する理想的な資産配分を選定する手法です。
preview
Connexusの本体(第4回):HTTP本体サポートの追加

Connexusの本体(第4回):HTTP本体サポートの追加

この記事では、JSONやプレーンテキストなどのデータを送信するために不可欠な、HTTPリクエストにおける本体(ボディ)の概念について探りました。適切なヘッダを使った正しい使い方を議論し、説明しました。また、Connexusライブラリの一部であるChttpBodyクラスを導入し、リクエストの本体の処理を簡素化しました。
preview
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
preview
適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(V):AnalyticsPanelクラス

MQL5で取引管理者パネルを作成する(第9回):コード編成(V):AnalyticsPanelクラス

この議論では、リアルタイムの市場データや取引口座情報の取得方法、さまざまな計算の実行、そしてその結果をカスタムパネルに表示する方法について探ります。これを実現するために、パネル作成を含むこれらすべての機能をカプセル化したAnalyticsPanelクラスの開発にさらに深く取り組みます。この取り組みは、モジュラー設計の原則とコード構造のベストプラクティスを用い、高度な機能を導入するNew Admin Panel EAの継続的な拡張の一環です。
preview
取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。
preview
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
preview
金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第2回):テスト用の合成シンボルの作成

金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第2回):テスト用の合成シンボルの作成

この記事では、敵対的生成ネットワーク(GAN)を使用して合成シンボルを作成し、EURUSDなどの実際の市場商品の挙動を模倣した現実的な金融データを生成します。GANモデルは、過去の市場データからパターンやボラティリティを学習し、同様の特性を持つ合成価格データを生成します。
preview
PythonとMQL5による多銘柄分析(第3回):三角為替レート

PythonとMQL5による多銘柄分析(第3回):三角為替レート

トレーダーは、誤ったシグナルによるドローダウンに直面することが多い一方で、確認を待ちすぎることで、有望な機会を逃すこともあります。本稿では、ドル建て銀価格(XAGUSD)、ユーロ建て銀価格(XAGEUR)、およびEURUSD為替レートを用いた三角裁定取引戦略を紹介し、市場のノイズをフィルタリングする方法を解説します。市場間の相関関係を活用することで、隠れた市場センチメントをリアルタイムで捉え、エントリータイミングをより洗練させることが可能になります。
preview
知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

知っておくべきMQL5ウィザードのテクニック(第60回):移動平均とストキャスティクスパターンを用いた推論(ワッサースタインVAE)

MA(移動平均)とストキャスティクスの補完的な組み合わせに着目し、教師あり学習および強化学習を経た後の段階において、推論が果たしうる役割を検証します。推論にはさまざまなアプローチが存在しますが、この記事では変分オートエンコーダ(VAE: Variational Auto-Encoder)を用いる方法を採用します。まずはPythonでこのアプローチを探求し、その後、訓練済みモデルをONNX形式でエクスポートし、MetaTraderのウィザードで構築したエキスパートアドバイザー(EA)で活用します。
preview
USDとEURの指数チャート—MetaTrader 5サービスの例

USDとEURの指数チャート—MetaTrader 5サービスの例

MetaTrader 5サービスを例に、米ドル指数(USDX)およびユーロ指数(EURX)チャートの作成と更新について考察します。サービス起動時には、必要な合成銘柄が存在するかを確認し、未作成であれば新規作成します。その後、それを気配値表示ウィンドウに追加します。続いて、合成銘柄の1分足およびティック履歴を作成し、最後にその銘柄のチャートを表示します。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。