DoEasy-コントロール(第10部):WinFormsオブジェクト - インターフェイスのアニメーション化
ユーザーやオブジェクトとのオブジェクト対話機能を実装して、グラフィカルインターフェイスをアニメーション化するときが来ました。より複雑なオブジェクトを正しく動作させるためにも、新しい機能が必要になります。
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)
マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。
Metatrader 5のWebsockets — Windows APIを使用した非同期クライアント接続
この記事では、MetaTraderプログラム向けに非同期のWebSocketクライアント接続を可能にするカスタムDLL(ダイナミックリンクライブラリ)の開発について解説します。
リプレイシステムの開発(第63回):サービスの再生(IV)
この記事では、1分足のティックシミュレーションに関する問題を最終的に解決し、実際のティックと共存できるようにします。これにより、将来的なトラブルを回避することが可能になります。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)
本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)
今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
初級から中級まで:配列(I)
この記事は、これまでに議論してきた内容と、新たな研究段階との橋渡しとなるものです。この記事を理解するためには、前回までの記事を読んでおく必要があります。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)
最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例
以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。
MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築
この記事では、アジアブレイクアウト戦略のためのエキスパートアドバイザー(EA)をMQL5で構築します。セッション中の高値と安値を計算し、移動平均によるトレンドフィルタリングをおこないます。また、動的なオブジェクトスタイリング、ユーザー定義の時間入力、堅牢なリスク管理も実装します。最後に、プログラムの精度を高めるためのバックテストおよび最適化手法を紹介します。
MQL5での取引戦略の自動化(第15回):プライスアクションハーモニックCypherパターンの可視化
この記事では、CypherハーモニックパターンのMQL5における自動化について探究し、その検出方法とMetaTrader 5チャート上での可視化を詳しく解説します。スイングポイントを特定し、フィボナッチに基づいたパターンを検証し、明確な視覚的注釈とともに取引を実行するエキスパートアドバイザー(EA)を実装します。記事の最後では、効果的な取引のためのバックテストおよび最適化方法についても説明します。
行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。
リプレイシステムの開発(第70回):正しい時間を知る(III)
この記事では、CustomBookAdd関数を適切かつ効果的に使う方法について見ていきます。一見シンプルに見えるこの関数ですが、実際には多くの細かな注意点があります。たとえば、マウスインジケーターに対してカスタム銘柄がオークション中なのか、取引中なのか、市場が閉まっているのかを伝えることができます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第3部)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発手順を説明する連載の第3部です。今回は、CONNECT/CONNACKパケット交換の操作時の動作部分を実装するために、テスト駆動開発をどのように使用しているかについて詳しく説明します。この手順の最後に、クライアントは、接続の試みから生じる可能性のあるサーバー結果のどれに対しても、絶対的に、適切に振る舞うことができなければなりません。
化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存
多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
リプレイシステムの開発(第69回):正しい時間を知る(II)
今日は、iSpread機能がなぜ必要なのかについて考察します。同時に、ティックが1つも存在しない状況で、システムがどのようにバーの残り時間を通知するのかについても理解を深めていきます。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
ニューラルネットワークの実践:割線
理論的な部分ですでに説明したように、ニューラルネットワークを扱う場合、線形回帰と導関数を使用する必要があります。なぜでしょうか。その理由は、線形回帰は現存する最も単純な公式の1つだからです。本質的に、線形回帰は単なるアフィン関数です。しかし、ニューラルネットワークについて語るとき、私たちは直接線形回帰の効果には興味がありません。この直線を生み出す方程式に興味があるのです。作られた線にはそれほど興味がありません。私たちが理解すべき主要な方程式をご存じですか。ご存じでなければ、この記事を読んで理解することをお勧めします。
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ
この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)
前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。
知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル
ガウス過程カーネルは正規分布の共分散関数であり、予測において役割を果たす可能性があります。MQL5のカスタムシグナルクラスで、このユニークなアルゴリズムを探求し、プライムエントリシグナルやエグジットシグナルとして活用できるかを検証しました。
PythonとMQL5による多銘柄分析(第2回):ポートフォリオ最適化のための主成分分析
取引口座のリスク管理は、すべてのトレーダーにとっての課題です。MetaTrader 5で、さまざまな銘柄に対して高リスク、中リスク、低リスクモードを動的に学習する取引アプリケーションを開発するにはどうすればよいでしょうか。PCA(主成分分析)を使用することで、ポートフォリオの分散をより効果的に管理できるようになります。MetaTrader 5から取得した市場データを基に、これら3つのリスクモードを学習するアプリケーションの作成方法を説明します。
MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する
ボラティリティは、影響力の大きいニュースイベントの周辺でピークに達する傾向があり、大きなブレイクアウトの機会を生み出します。本記事では、カレンダーを基にしたブレイクアウト戦略の実装プロセスについて説明します。カレンダーデータを解釈・保存するためのクラスの作成、これを活用した現実的なバックテストの開発、そして最終的にライブ取引用の実行コードの実装までを一貫して解説します。
MQL5での取引戦略の自動化(第11回):マルチレベルグリッド取引システムの開発
本記事では、MQL5を使用してマルチレベルのグリッド取引システムEAを開発し、グリッド取引戦略の背後にあるアーキテクチャとアルゴリズム設計に焦点を当てます。複数層にわたるグリッドロジックの実装と、市場のさまざまな状況に対応するためのリスク管理手法について探ります。最後に、自動売買システムの構築・テスト・改善をおこなうための詳細な説明と実践的なヒントを提供します。
リプレイシステムの開発(第29回):エキスパートアドバイザープロジェクト - C_Mouseクラス(III)
C_Mouseクラスを改良した後は、分析のためのまったく新しいフレームワークを作るためのクラスを作ることに集中しましょう。この新しいクラスを作るのに、継承やポリモーフィズムは使用しません。その代わりに、価格線に新しいオブジェクトを追加します。それがこの記事でやろうとしていることです。次回は、分析結果を変更する方法について見るつもりです。これらはすべて、C_Mouseクラスのコードを変更することなくおこなわれます。実際には、継承やポリモーフィズムを使用すれば、もっと簡単に実現できるでしょう。しかし、同じ結果を得る方法は他にもあります。
リプレイシステムの開発(第30回):エキスパートアドバイザープロジェクト - C_Mouseクラス(IV)
今日は、プログラマーとしての職業生活のさまざまな段階で非常に役立つテクニックを学びます。多くの場合、制限されているのはプラットフォーム自体ではなく、制限について話す人の知識です。この記事では、常識と創造性があれば、クレイジーなプログラムなどを作成することなく、MetaTrader 5 プラットフォームをより面白くて多用途にし、シンプルでありながら安全で信頼性の高いコードを作成できることを説明します。創造力を駆使して、ソース コードを1行も削除したり追加したりすることなく、既存のコードを変更します。
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)
独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債
この連載では、人気のある取引戦略を探り、AIを使ってその改善を試みます。今日の記事では、株式市場と債券市場の関係に基づく古典的な取引戦略を再考します。
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル
この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。
取引におけるナッシュ均衡ゲーム理論のHMMフィルタリングの応用
この記事では、ジョン・ナッシュのゲーム理論、特にナッシュ均衡の取引への応用について詳しく掘り下げます。トレーダーがPythonスクリプトとMetaTrader 5を活用し、ナッシュの原理を利用して市場の非効率性を特定し、活用する方法について解説します。また、この記事では、隠れマルコフモデル(HMM)や統計分析の利用を含むこれらの戦略を実行するためのステップバイステップのガイドを提供し、取引パフォーマンスの向上を目指します。
MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発
この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。
ダイナミックマルチペアEAの形成(第3回):平均回帰とモメンタム戦略
本記事では、ダイナミックマルチペアエキスパートアドバイザー(EA)を構築する旅の第3部として、平均回帰戦略とモメンタム戦略の統合に焦点を当てます。価格の平均からの乖離(Zスコア)を検出して取引に活かす方法や、複数の通貨ペアにおけるモメンタムを測定して取引方向を判断する方法について詳しく解説します。
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)
モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)
これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。
MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発
MQL5のコードやプロジェクトで、包括的な未決注文管理EX5ライブラリを開発して実装する方法を学びましょう。本記事では、広範な未決注文管理EX5ライブラリを作成する手順を紹介し、それをインポートおよび実装する方法を、取引パネルまたはグラフィカルユーザーインターフェース(GUI)の構築を通じて解説します。このEA注文パネルを使用すれば、チャートウィンドウ上のGUIから、指定されたマジックナンバーに関連する未決注文を直接オープン、監視、削除することが可能です。
PythonとMQL5による多銘柄分析(前編):NASDAQ集積回路メーカー
ポートフォリオのリターンを最大化するために、AIを活用してポジションサイジングと注文数量を最適化する方法について解説します。本稿では、アルゴリズムを用いて最適なポートフォリオを特定し、期待リターンやリスク許容度に応じてポートフォリオを調整する手法を紹介します。このプロセスでは、SciPyライブラリやMQL5言語を活用し、保有中のすべてのデータを基に、最適かつ分散化されたポートフォリオを構築します。
取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション
市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。