
MQL5で取引管理者パネルを作成する(第8回):分析パネル
今日は、管理パネルEAに統合された専用ウィンドウ内に、便利な取引メトリクスを組み込む方法について掘り下げていきます。本稿では、MQL5を活用して分析パネル(Analytics Panel)を開発する方法に焦点を当て、そのパネルが取引管理者にもたらすデータの価値について解説します。この開発プロセスは教育的意義が大きく、初心者・経験者を問わず開発者にとって有益な学びを提供します。この機能は、高度なソフトウェアツールを通じて取引マネージャーを支援する本連載の可能性を示す好例です。さらに、取引管理パネル(Trading Administrator Panel)の機能拡張の一環として、PieChartクラスとChartCanvasクラスの実装についても取り上げます。

リプレイシステムの開発(第61回):サービスの再生(II)
この記事では、リプレイ/シミュレーションシステムをより効率的かつ安全に動作させるための変更点について解説します。また、クラスを最大限に活用したいと考えている方にも役立つ情報を取り上げます。さらに、クラスを使用する際にコードのパフォーマンスを低下させるMQL5特有の問題点を取り上げ、それに対する具体的な解決策についても説明します。

人工電界アルゴリズム(AEFA)
この記事では、クーロンの静電気力の法則に触発された人工電界アルゴリズム(AEFA: Artificial Electric Field Algorithm)を紹介します。このアルゴリズムは、荷電粒子とその相互作用を利用して複雑な最適化問題を解決するために電気現象をシミュレートします。AEFAは、自然法則に基づいた他のアルゴリズムと比較して、独自の特性を示します。

初級から中級へ:配列と文字列(II)
この記事では、プログラミングがまだ非常に初歩的な段階にあるにもかかわらず、すでにいくつかの興味深いアプリケーションを実装できることを示します。今回は、比較的シンプルなパスワードジェネレーターを作成します。このようにして、これまでに説明してきたいくつかの概念を実際に適用することができます。加えて、特定の問題に対する解決策をどのように構築できるかについても考察していきます。

ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成
ギャンのSquare of 9に基づいて、時間と価格を2乗したインジケーターを作成します。コードを準備し、プラットフォームで異なる時間間隔でインジケーターをテストします。

多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更
以前開発されたリスクマネージャーには基本的な機能のみが含まれていました。取引戦略のロジックに干渉することなく取引結果を向上させるために、どのような開発の可能性があるかを検討してみましょう。

人工藻類アルゴリズム(AAA)
本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果
第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。

初級から中級へ:SWITCH文
この記事では、SWITCH文の最も基本的かつシンプルな使い方について学びます。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

初級から中級へ:変数(I)
多くの初心者プログラマーは、自分のコードが期待どおりに動作しない理由を理解するのに苦労します。コードを正しく機能させるためには、さまざまな要素が関わります。ただ関数や操作を組み合わせるだけでは、コードが適切に動作するとは限りません。今日は、単にコードをコピー&ペーストするのではなく、実際に正しくコードを書く方法を学んでみましょう。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

初級から中級へ:変数(II)
今日は、static変数の取り扱いについて学びます。このメカニズムを使用する際に守らなければならないいくつかの推奨事項があるため、この問題は初心者やある程度の経験を持つプログラマーにとってしばしば混乱を招きます。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper
いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。

リプレイシステムの開発(第63回):サービスの再生(IV)
この記事では、1分足のティックシミュレーションに関する問題を最終的に解決し、実際のティックと共存できるようにします。これにより、将来的なトラブルを回避することが可能になります。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

リプレイシステムの開発(第67回):コントロールインジケーターの改良
この記事では、コードを少し手直しすることで、どのような改善が得られるかを見ていきます。今回の改良は、コードの簡素化を図り、MQL5ライブラリの呼び出しをより活用し、そして何よりも、将来的に開発する可能性のある他のプロジェクトでも、より安定して安全かつ使いやすくなることを目的としています。

細菌走化性最適化(BCO)
この記事では、細菌走化性最適化(BCO)アルゴリズムのオリジナルバージョンとその改良版を紹介します。新バージョン「BCOm」では、細菌の移動メカニズムを簡素化し、位置履歴への依78ytf存を軽減するとともに、計算負荷の大きかった元のバージョンに比べて、より単純な数学的手法を採用しています。この記事では両者の違いを詳しく検討し、とくにBCOmの特徴に焦点を当てます。また、テストを実施し、その結果をまとめます。

アーチェリーアルゴリズム(AA)
この記事では、アーチェリーに着想を得た最適化アルゴリズムについて詳しく検討し、有望な「矢」の着地点を選定するメカニズムとしてルーレット法の活用に焦点を当てます。この手法により、解の質を評価し、さらなる探索に最も有望な位置を選び出すことが可能になります。

取引におけるニューラルネットワーク:データの局所構造の探索
ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。

Connexusヘルパー(第5回):HTTPメソッドとステータスコード
この記事では、Web上でクライアントとサーバー間の重要な通信手段であるHTTPメソッドとステータスコードについて理解します。各メソッドの役割を理解することで、リクエストをより正確に制御できるようになり、サーバーに対して実行したいアクションを明確に伝えることができます。これにより、通信の効率が向上します。

初級から中級へ:変数(III)
今日は、定義済みのMQL5言語変数と定数の使用方法を見ていきます。さらに、別の特殊なタイプの変数である関数を分析します。これらの変数を適切に操作する方法を知っているかどうかは、動作するアプリケーションと動作しないアプリケーションの違いを意味する場合があります。ここで紹介されている内容を理解するには、以前の記事で説明した内容を理解する必要があります。

初級から中級へ:演算子の優先順位
これは間違いなく、純粋に理論だけで説明するには最も難しいテーマの一つです。だからこそ、ここで取り上げるすべての内容を実際に手を動かして練習する必要があります。一見すると単純そうに見えるかもしれませんが、演算子というトピックは、継続的な学習と実践を通じて初めて理解できるものです。

MQL5での取引戦略の自動化(第3回):ダイナミック取引管理のためのZone Recovery RSIシステム
この記事では、MQL5を使ってZone Recovery RSI EAシステムを構築し、RSIシグナルによって取引を開始し、損失を管理するためのリカバリーストラテジーを実装します。取引エントリー、リカバリーロジック、ポジション管理を自動化するために、ZoneRecoveryクラスを作成します。この記事の最後では、EAのパフォーマンスを最適化し、その有効性を高めるためのバックテストの洞察を紹介します。

ニューラルネットワークの実践:最初のニューロン
この記事では、シンプルで控えめなもの、つまりニューロンの構築を始めます。ごく少量のMQL5コードでプログラムしますが、それでも私のテストではこのニューロンは見事に機能しました。とはいえ、私がここで何を言おうとしているのかを理解するには、これまでのニューラルネットワークに関する連載を少し振り返ってみる必要があります。

多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備
現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。

取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)
本記事では、中間データの集約を不要とするSuperpoint Transformer (SPFormer)に基づく3Dオブジェクトのセグメンテーション手法を紹介します。これによりセグメンテーション処理の高速化とモデル性能の向上が実現されます。

MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発
この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。

適応型社会行動最適化(ASBO):二段階の進化
生物の社会的行動と、それが新しい数学モデルであるASBO(適応型社会的行動最適化)の開発に与える影響について、引き続き考察していきます。今回は、二段階の進化プロセスを詳しく分析し、アルゴリズムをテストした上で結論を導き出します。自然界において生物の集団が生存のために協力するのと同様に、ASBOも集団行動の原理を活用し、複雑な最適化問題を解決します。

Connexus Observer(第8回):リクエストObserverの追加
連載「Connexusライブラリ」の最終回では、Observerパターンの実装に加え、ファイルパスやメソッド名に関する重要なリファクタリングについて解説します。本連載を通じて、複雑なアプリケーションにおけるHTTP通信を簡素化することを目的としたConnexusの開発全体を取り上げました。

ニューラルネットワークの実践:ニューロンのスケッチ
この記事では、基本的なニューロンを作ります。単純に見えるし、多くの人はこのコードをまったくつまらない無意味なものだと考えるかもしれませんが、このニューロンの単純なスケッチを楽しく勉強してほしいと思います。コードを修正することを恐れず、完全に理解することが目標です。

初級から中級へ:BREAK文とCONTINUE文
この記事では、ループ内でのRETURN、BREAK、CONTINUE文の使い方について解説します。ループの実行フローにおいて、これらの各文がどのような役割を果たすかを理解することは、より複雑なアプリケーションを扱う上で非常に重要です。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール
インジケーターを安全に使用する方法を定義したベストプラクティスに従うのは、必ずしも容易ではありません。市場の動きが穏やかな状況では、インジケーターが意図した通りのシグナルを発しないことがあり、その結果、アルゴリズム取引における貴重なチャンスを逃してしまう可能性があります。本稿では、この問題に対する潜在的な解決策として、利用可能な市場データに応じて取引ルールを適応させることが可能な取引アプリケーションの構築方法を提案します。

取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減
モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。

取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)
この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。

取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)
エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。

知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習
Soft Actor Criticは、Actorネットワーク1つとCriticネットワーク2つ、合計3つのニューラルネットワークを用いる強化学習アルゴリズムです。これらのモデルは、CriticがActorネットワークの予測精度を高めるように設計された、いわばマスタースレーブの関係で連携します。本連載では、ONNXの導入も兼ねて、こうした概念を、ウィザード形式で構築されたエキスパートアドバイザー(EA)内のカスタムシグナルとしてどのように実装・活用できるかを探っていきます。

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル
前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。

知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)
MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。

Connexusの本体(第4回):HTTP本体サポートの追加
この記事では、JSONやプレーンテキストなどのデータを送信するために不可欠な、HTTPリクエストにおける本体(ボディ)の概念について探りました。適切なヘッダを使った正しい使い方を議論し、説明しました。また、Connexusライブラリの一部であるChttpBodyクラスを導入し、リクエストの本体の処理を簡素化しました。