RestAPIを統合したMQL5強化学習エージェントの開発(第1回):MQL5でRestAPIを使用する方法
この記事では、異なるアプリケーションやソフトウェアシステム間の相互作用におけるAPI (Application Programming Interface)の重要性についてお話しします。アプリケーション間のやり取りを簡素化し、データや機能を効率的に共有することを可能にするAPIの役割を見ていきます。
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)
前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
時系列の非定常性の指標としての2標本コルモゴロフ–スミルノフ検定
この記事では、最も有名なノンパラメトリック同質性検定の1つである2標本のコルモゴロフ–スミルノフ検定について考察します。モデルデータと実際の相場の両方が分析されています。また、この記事では非定常性指標(iスミルノフ距離)の構築例も紹介しています。
ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減
Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。
古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測
本連載では、古典的な取引戦略を実証的に分析し、AIを用いてそれらの改善が可能かどうかを検証します。本日の議論では、線形判別分析モデルを用いて高値更新と安値更新の予測に挑戦します。
MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成
本記事では、Envelopes Trend取引戦略と統合されたZone Recoveryシステムを開発します。RSI (Relative Strength Index)とEnvelopesインジケーターを用いて取引を自動化し、損失を抑えるリカバリーゾーンを効果的に管理するためのアーキテクチャを詳述します。実装とバックテストを通じて、変動する市場環境に対応できる効果的な自動取引システムの構築方法を示します。
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)
この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。
知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト
経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。
初級から中級へ:演算子
この記事では、主な演算子 について学んでいきます。このトピックは理解しやすいかもしれませんが、コードフォーマットに数式を含める際には非常に重要なポイントがいくつかあります。これらの細部を十分に理解していないと、経験の浅いプログラマーは最終的に自分で解決策を見つけることをあきらめてしまうかもしれません。
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド
この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。
MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築
この記事では、動的なロットスケーリングを採用したMQL5のグリッドトレーディングエキスパートアドバイザー(EA)を構築します。戦略の設計、コードの実装、バックテストのプロセスについて詳しく解説します。最後に、自動売買システムを最適化するための重要な知見とベストプラクティスを共有します。
機械学習における量子化(第1回):理論、コード例、CatBoostでの実装解析
この記事では、ツリーモデルの構築における量子化の理論的な応用を考察し、CatBoostに実装された量子化手法を紹介します。複雑な数式は使用しません。
MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)
このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)
本記事では、より良い売買シグナルを得るために、RSIのレベルと期間を最適化する方法を探ります。最適なRSI値を推定する手法や、グリッドサーチと統計モデルを用いた期間選定の自動化について紹介します。最後に、Pythonによる分析を活用しながら、MQL5でソリューションを実装します。私たちのアプローチは、複雑になりがちな問題をシンプルに解決することを目指した、実用的かつ分かりやすいものです。
MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)
この記事では、MQL5でプライスアクションインジケーターを構築する方法を学びます。具体的には、トレンド分析において重要なポイントである、安値(L)、高値(H)、安値切り上げ(HL)、高値更新(HH)、安値更新(LL)、高値切り下げ(LH)といった構造の把握に焦点を当てます。また、プレミアムゾーンとディスカウントゾーンの識別、50%リトレースメントレベルの表示、リスクリワード比に基づく利益目標の計算についても解説します。さらに、トレンド構造に基づいてエントリーポイント、ストップロス(SL)、テイクプロフィット(TP)の設定方法も扱います。
リプレイシステムの開発 - 市場シミュレーション(第24回):FOREX (V)
本日は、Last価格に基づくシミュレーションを妨げていた制限を取り除き、このタイプのシミュレーションに特化した新しいエントリポイントをご紹介します。操作の仕組みはすべて、FOREX市場の原理に基づいています。この手順の主な違いは、BidシミュレーションとLastシミュレーションの分離です。ただし、時間をランダム化し、C_Replayクラスに適合するように調整するために使用された方法は、両方のシミュレーションで同じままであることに注意することが重要です。これは良いことです。特にティック間の処理時間に関して、一方のモードを変更すれば、もう一方のモードも自動的に改善されるからです。
知っておくべきMQL5ウィザードのテクニック(第03回):シャノンのエントロピー
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)
ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
Pythonを使用したボラティリティ予測インジケーターの作成
本記事では、二値分類を使って将来の極端なボラティリティを予測します。さらに、機械学習を活用した極端ボラティリティ予測インジケーターの開発もおこないます。
DoEasy-コントロール(第12部):基本リストオブジェクト、ListBoxおよびButtonListBox WinFormsオブジェクト
この記事では、WinFormsオブジェクトリストの基本オブジェクトと、2つの新しいオブジェクトを作成します。ListBoxとButtonListBoxです。
リプレイシステムの開発(第31回):エキスパートアドバイザープロジェクト - C_Mouseクラス(V)
リプレイ/シミュレーションの終了まで残り時間を表示できるタイマーが必要です。これは一見、シンプルで迅速な解決策に見えるかもしれません。多くの人は、取引サーバーが使用しているのと同じシステムを適応して使用しようとするだけです。しかし、この解決策を考えるとき、多くの人が考慮しないことがあります。リプレイでは、そしてシミュレーションではなおさら、時計の動きは異なるということです。こうしたことが、このようなシステムの構築を複雑にしています。
RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数
この記事では、MQL5がPythonやFastAPIとどのように相互作用できるか、MQL5のHTTP呼び出しを使用してPythonの三目並べゲームと相互作用する方法について説明します。この記事では、この統合のためのFastAPIを使用したAPIの作成について説明し、MQL5でのテストスクリプトを提供することで、MQL5の多用途性、Pythonのシンプルさ、そして革新的なソルーションを生み出すために異なるテクノロジーを接続するFastAPIの有効性を強調しています。
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)
今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。
MQL5 Algo Forgeへの移行(第1回):メインリポジトリの作成
MetaEditorでプロジェクトを進める際、開発者はしばしばコードのバージョンを管理する必要に直面します。MetaQuotesは最近、Gitへの移行と、コードのバージョン管理や共同作業を可能にするMQL5 Algo Forgeの立ち上げを発表しました。本記事では、新しく導入されたツールと既存のツールを、より効率的に活用する方法について解説します。
MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。
行列分解:基本
ここでの目的は教訓を得ることなので、できるだけシンプルに話を進めたいと思います。具体的には、必要な行列の乗算だけを実装します。行列とスカラーの乗算をシミュレートするにはこれで十分であることが今日わかるでしょう。行列分解を実装する際に多くの人が直面する最大の課題は、スカラーの分解と異なり、因子の順序が結果に影響を与えるため、行列の場合はその点に注意が必要だということです。
MQL5における組合せ対称交差検証法
この記事では、ストラテジーテスターの低速&完全アルゴリズムを使用してストラテジーを最適化した後に過剰学習が発生する可能性の程度を測定するために、純粋なMQL5における組合せ対称交差検証法の実装を紹介します。
GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する
この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。
純粋なMQL5におけるエネルギーベースの学習を用いた特徴量選択アルゴリズム
この記事では、「FREL:A stable feature selection algorithm」と題された学術論文に記載された、Feature Weighting as Regularized Energy-Based Learningと呼ばれる特徴量選択アルゴリズムの実装を紹介します。
最も注目すべき人工協調探索アルゴリズムの修正(ACSm)
ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。
エキスパートアドバイザーの堅牢性テスト
戦略開発には、多くの複雑な要素が含まれていますが、これらの多くは初心者トレーダーには十分に伝えられていません。その結果、私自身を含め多くのトレーダーが、こうした教訓を痛みを伴う経験を通じて学ぶことになりました。この記事では、MQL5で戦略を開発する際に初心者トレーダーが直面しがちな一般的な落とし穴について、私の観察に基づいて解説します。EAの信頼性を見極め、簡単に実践できる方法で自作EAの堅牢性を検証するための、さまざまなヒントやコツ、具体例を紹介します。本記事の目的は、読者がEA購入時の詐欺を回避し、自身の戦略開発での失敗を未然に防げるよう支援することです。
時間進化移動アルゴリズム(TETA)
これは私自身のアルゴリズムです。本記事では、並行宇宙や時間の流れの概念に着想を得た「時間進化移動アルゴリズム(TETA: Time Evolution Travel Algorithm)」を紹介します。本アルゴリズムの基本的な考え方は、従来の意味でのタイムトラベルは不可能であるものの、異なる現実に至る一連の出来事の順序を選択することができるという点にあります。
プライスアクション分析ツールキットの開発(第14回):Parabolic Stop and Reverseツール
プライスアクション分析にテクニカルインジケーターを取り入れることは、非常に有効なアプローチです。これらのインジケーターは、反転や押し戻しの重要なレベルを示すことが多く、市場の動きを把握する上での貴重な手がかりとなります。本記事では、パラボリックSARインジケーターを用いてシグナルを生成する自動ツールをどのように開発したかを紹介します。
ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)
前回の記事では、画像内のオブジェクトを検出する方法の1つを紹介しました。ただし、静的な画像の処理は、私たちが分析する価格のダイナミクスのような動的な時系列の処理とは多少異なります。この記事では、私たちが解決しようとしている問題にやや近い、ビデオ中の物体を検出する方法について考えます。
知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題
関数同定問題は、研究対象のデータセットをマッピングする基本モデルがどのようなものであるかについて、最小限の仮定から始める回帰の形式です。ベイズ法やニューラルネットワークでも実装可能ですが、ここでは遺伝的アルゴリズムによる実装が、MQL5ウィザードで使用可能なExpertSignalクラスのカスタマイズにどのように役立つかを見ていきます。
MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。
DoEasy - コントロール(第3部):バインドされたコントロールの作成
本稿では、基本要素にバインドされた従属コントロールを作成します。開発は、基本的な制御機能を使用して実行されます。さらに、影を持つことができるオブジェクトに適用するとまだいくつかのロジックエラーが発生するため、グラフィック要素の影オブジェクトを少しいじります。
MQL5 Algo Forgeのご紹介
アルゴリズム取引開発者のための専用ポータル「MQL5 Algo Forge」をご紹介します。MQL5 Algo Forgeは、Git のパワーと、MQL5エコシステム内でプロジェクトを管理・整理するための直感的なインターフェースを兼ね備えています。ここでは、気になる著者をフォローしたり、チームを結成したり、アルゴリズム取引プロジェクトで共同作業を行うことが可能です。
DoEasy - コントロール(第29部):ScrollBar補助コントロール
この記事では、ScrollBar補助コントロール要素とその派生オブジェクト(垂直および水平のスクロールバー)の開発を開始します。スクロールバーは、フォームのコンテンツがコンテナを超えた場合にスクロールするために使用されます。スクロールバーは通常フォームの下部と右側にあります。下部の水平のものはコンテンツを左右にスクロールし、垂直のものは上下にスクロールします。