Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto MQL5 que codifica capturas de pantalla de gráficos como datos de imagen y las envía a un chat de Telegram a través de peticiones HTTP. Al integrar la codificación y transmisión de fotos, mejoramos el sistema existente MQL5-Telegram con perspectivas visuales de trading directamente dentro de Telegram.
preview
Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)

Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)

Saber cómo introducir los datos de la Web en un EA no es tan obvio, o mejor dicho, no es tan simple que puede hacerse sin conocer y entender realmente todas las características que están presentes en MetaTrader 5.
preview
Redes neuronales: así de sencillo (Parte 82): Modelos de ecuaciones diferenciales ordinarias (NeuralODE)

Redes neuronales: así de sencillo (Parte 82): Modelos de ecuaciones diferenciales ordinarias (NeuralODE)

En este artículo, hablaremos de otro tipo de modelos que están destinados a estudiar la dinámica del estado ambiental.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Existen bastantes estrategias comerciales distintas. Para diversificar los riesgos y aumentar la estabilidad de los resultados comerciales, puede resultar útil utilizar varias estrategias que funcionen en paralelo. Pero si cada estrategia se implementa como un asesor independiente, se hace mucho más difícil gestionar su trabajo conjunto en una cuenta comercial. Para resolver este problema, es deseable implementar el funcionamiento de diferentes estrategias de negociación en un asesor.
preview
Previsión usando modelos ARIMA en MQL5

Previsión usando modelos ARIMA en MQL5

En este artículo, continuaremos el desarrollo de la clase CArima para construir modelos ARIMA añadiendo métodos de predicción intuitivos.
preview
Paradigmas de programación (Parte 1): Enfoque procedimental para el desarrollo de un asesor basado en la dinámica de precios

Paradigmas de programación (Parte 1): Enfoque procedimental para el desarrollo de un asesor basado en la dinámica de precios

Conozca los paradigmas de programación y su aplicación en el código MQL5. En este artículo, analizaremos las características de la programación procedimental y ofreceremos ejemplos prácticos. Asimismo, aprenderemos a desarrollar un asesor basado en la acción del precio (Action Price) utilizando el indicador EMA y datos de velas. Además, el artículo introduce el paradigma de la programación funcional.
preview
Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)

Redes neuronales: así de sencillo (Parte 65): Aprendizaje supervisado ponderado por distancia (DWSL)

En este artículo, le presentaremos un interesante algoritmo que se basa en la intersección de los métodos de aprendizaje supervisado y por refuerzo.
preview
Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

El presente artículo describimos un modo de optimización rápida usando el método de enjambre de partículas, y presentamos una implementación en MQL lista para utilizar tanto en el modo de flujo único dentro de un EA, como en el modo paralelo de flujo múltiples como un complemento ejecutado en los agentes locales del simulador.
preview
Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Seguimos explorando el aprendizaje por refuerzo. En este artículo, hablaremos del método de aprendizaje Q profundo o deep Q-learning. El uso de este método permitió al equipo de DeepMind crear un modelo capaz de superar a los humanos jugando a los videojuegos de ordenador de Atari. Nos parece útil evaluar el potencial de esta tecnología para las tareas comerciales.
preview
Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Lo confieso: ha pasado más de un año desde que publiqué el último artículo. En tanto tiempo, me ha sido posible repensar mucho, desarrollar nuevos enfoques. Y en este nuevo artículo, me gustaría alejarme un poco del método anteriormente usado de aprendizaje supervisado, y sugerir una pequeña inmersión en los algoritmos de aprendizaje no supervisado. En particular, vamos a analizar uno de los algoritmos de clusterización, las k-medias.
preview
Gestión de Riesgo (Parte 1): Fundamentos para Construir una Clase de Gestión de Riesgo

Gestión de Riesgo (Parte 1): Fundamentos para Construir una Clase de Gestión de Riesgo

En este artículo exploraremos los fundamentos de la gestión de riesgo en el trading, y aprenderemos a crear nuestras primeras funciones para obtener el lote adecuado para una operación y el stop loss. Además, profundizaremos en cómo funcionan estas funciones, explicando cada paso detalladamente. Nuestro objetivo es proporcionar una comprensión clara de cómo aplicar estos conceptos en el trading automatizado. Al final, pondremos todo en práctica creando un script simple con el archivo de inclusión que hemos diseñado.
preview
Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst

Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst

El exponente de Hurst es una medida del grado de autocorrelación de una serie temporal a largo plazo. Se entiende que capta las propiedades a largo plazo de una serie temporal y, por tanto, tiene cierto peso en el análisis de series temporales, incluso fuera de las series temporales económicas/financieras. Sin embargo, nos centramos en sus posibles beneficios para los operadores, examinando cómo esta métrica podría combinarse con las medias móviles para crear una señal potencialmente sólida.
preview
Aprendiendo a diseñar un sistema de trading con Williams PR

Aprendiendo a diseñar un sistema de trading con Williams PR

Aquí tenemos un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En dicha serie, escribimos sistemas en el lenguaje MQL5 para su uso en MetaTrader 5. En este artículo, analizaremos el indicador de rango porcentual de Williams (Williams' %R).
preview
Cómo construir un EA que opere automáticamente (Parte 06): Tipos de cuentas (I)

Cómo construir un EA que opere automáticamente (Parte 06): Tipos de cuentas (I)

Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Hasta ahora nuestro EA puede funcionar en cualquier tipo de situación, pero aún no está listo para ser automatizado, por lo que tenemos que hacer algunas cosas.
Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico
Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico

Gráficos en la biblioteca DoEasy (Parte 73): Objeto de formulario del elemento gráfico

En el presente artículo, iniciaremos un nuevo apartado del trabajo con gráficos. En esta ocasión, vamos a crear el objeto de estado del ratón, el objeto básico de todos los elementos gráficos y la clase de objeto de formulario de los elementos gráficos de la biblioteca.
preview
Gestor de riesgos para el trading algorítmico

Gestor de riesgos para el trading algorítmico

Los objetivos de este artículo son: demostrar por qué el uso del gestor de riesgos es algo imprescindible, adaptar los principios del riesgo controlado en el trading algorítmico en una clase aparte, de modo que todo el mundo pueda comprobar de forma independiente la eficacia del enfoque de racionamiento del riesgo en el trading intradía y la inversión en los mercados financieros. En este artículo, detallaremos la escritura de una clase de gestor de riesgos para el trading algorítmico como continuación del artículo anterior sobre la escritura de un gestor de riesgos para el trading manual.
preview
Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.
preview
Ejemplo de optimización estocástica y control óptimo

Ejemplo de optimización estocástica y control óptimo

Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Por asesor multidivisa en este artículo entendemos un asesor, o un robot comercial que puede operar (abrir/cerrar órdenes, gestionar órdenes como Trailing Stop Loss y Trailing Profit) con más de un par de símbolos desde un gráfico. Esta vez usaremos un solo indicador, a saber, la media móvil triangular en uno o varios marcos temporales.
preview
Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)

Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)

En este artículo, le presentamos el algoritmo GTGAN, introducido en enero de 2024 para resolver problemas complejos de disposición arquitectónica con restricciones gráficas.
preview
Patrones de diseño en MQL5 (Parte 2): Patrones estructurales

Patrones de diseño en MQL5 (Parte 2): Patrones estructurales

En este artículo, seguiremos estudiando los patrones de diseño que permiten a los desarrolladores crear aplicaciones extensibles y fiables no solo en MQL5, sino también en otros lenguajes de programación. Esta vez hablaremos de un tipo diferente: los patrones estructurales. Asimismo, aprenderemos a diseñar sistemas usando las clases disponibles para formar estructuras mayores.
preview
Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

El indicador sobre metabarras ha detectado más velas que el clásico. Veamos si aporta un beneficio real en el trading automatizado.
preview
Patrones de diseño en MQL5 (Parte I): Patrones de creación (Creational Patterns)

Patrones de diseño en MQL5 (Parte I): Patrones de creación (Creational Patterns)

Existen métodos que pueden usarse para resolver problemas típicos. Una vez entendemos cómo utilizar estas técnicas una vez, podemos escribir programas de forma eficaz y aplicar el concepto DRY (No te repitas, en inglés, don't repeat yourself). En este contexto, resultan muy útiles los patrones de diseño que pueden aportar soluciones a problemas bien descritos y recurrentes.
preview
Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas

Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas

Creación de un sistema de órdenes cruzadas. Hay una clase de activos que les hace la vida muy difícil a los comerciantes, estos son los activos de contratos futuros, y ¿por qué le hacen la vida difícil al comerciante?
preview
Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control

Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control

En este artículo, seguiremos familiarizándonos con el lenguaje de programación MQL5. Esta serie de artículos no es solo un tutorial, sino también una puerta de entrada al mundo de la programación. ¿Qué hace especiales a estos artículos? Hemos procurado que las explicaciones sean sencillas para que los conceptos complejos resulten accesibles a todos. Aunque el material es accesible, para obtener los mejores resultados será necesario reproducir activamente todo lo que vamos a tratar. Solo así obtendremos el máximo beneficio de estos artículos.
preview
Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido

Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido

En uno de los artículos de esta serie, nos familiarizamos con el método de aprendizaje Q. Este método promedia las recompensas de cada acción. En 2017 se presentaron dos trabajos que muestran un mayor éxito al estudiar la función de distribución de recompensas. Vamos a analizar la posibilidad de utilizar esta tecnología para resolver nuestros problemas.
preview
Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)

Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)

Nuestro sistema de órdenes todavía falla en hacer una cosa, pero FINALMENTE lo resolveremos...
Aprendiendo a diseñar un sistema comercial basado en Momentum
Aprendiendo a diseñar un sistema comercial basado en Momentum

Aprendiendo a diseñar un sistema comercial basado en Momentum

En el artículo anterior, mencionamos la importancia de detectar las tendencias, es decir, de determinar la dirección del movimiento del precio. En este artículo, hablaremos sobre otro concepto importante en el trading, que también existe en forma de indicador: el impulso del precio o el indicador Momentum. Asimismo, desarrollaremos nuestro propio sistema comercial basado en este indicador.
Gráficos en la biblioteca DoEasy (Parte 75): Métodos de trabajo con primitivas y texto en el elemento gráfico básico
Gráficos en la biblioteca DoEasy (Parte 75): Métodos de trabajo con primitivas y texto en el elemento gráfico básico

Gráficos en la biblioteca DoEasy (Parte 75): Métodos de trabajo con primitivas y texto en el elemento gráfico básico

En el presente artículo, continuaremos el desarrollo de la clase de elemento gráfico de todos los elementos gráficos de la biblioteca creados sobre la base de la Biblioteca Estándar CCanvas. En concreto, crearemos los métodos para dibujar las primitivas gráficas y los métodos para mostrar el texto en un objeto de elemento gráfico.
preview
Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)

Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)

Aquí pondremos realmente en práctica todos los conocimientos de esta serie. Finalmente construiremos un sistema 100% automático y funcional. Pero para hacer esto, tendrás que aprender una última cosa.
preview
Aprendiendo a diseñar un sistema de trading con Relative Vigor Index

Aprendiendo a diseñar un sistema de trading con Relative Vigor Index

Bienvenidos a un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, analizaremos el Índice de Vigor Relativo (Relative Vigor Index, RVI).
preview
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
preview
Desarrollando un EA comercial desde cero (Parte 08): Un salto conceptual (I)

Desarrollando un EA comercial desde cero (Parte 08): Un salto conceptual (I)

¿Cómo implementar una nueva funcionalidad de la forma más sencilla posible? Aquí daremos un paso atrás y luego daremos dos pasos adelante.
preview
Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.
preview
Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.
Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas
Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas

Gráficos en la biblioteca DoEasy (Parte 74): Elemento gráfico básico sobre la clase CCanvas

En esta ocasión, vamos a revisar el concepto de construcción de objetos gráficos del artículo anterior y a preparar una clase básica para todos los objetos gráficos de la biblioteca creados sobre la base de la clase CCanvas de la Biblioteca Estándar.
preview
Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)

Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)

Hoy seguiremos desarrollando el nuevo sistema de ordenes. No es nada fácil implementar un nuevo sistema, muchas veces nos encontramos con problemas que dificultan mucho el proceso, cuando suceden hay que parar y volver a analizar el rumbo que se está tomando.
preview
Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.
preview
Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos

Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos

¿Sabía que podemos obtener más precisión pronosticando ciertos indicadores técnicos que prediciendo el precio subyacente de un símbolo negociado? Únase a nosotros para explorar cómo aprovechar esta información para mejorar las estrategias de negociación.
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.