
MQL5 Strategietester verstehen und effektiv nutzen
Für MQL5-Programmierer oder -Entwickler ist es unerlässlich, wichtige und wertvolle Werkzeuge zu beherrschen. Eines dieser Werkzeuge ist der Strategietester. Dieser Artikel ist ein praktischer Leitfaden zum Verständnis und zur Verwendung des Strategietesters von MQL5.

Brute-Force-Ansatz zur Mustersuche (Teil II): Immersion
In diesem Artikel werden wir die Diskussion über den Brute-Force-Ansatz fortsetzen. Ich werde versuchen, das Muster anhand der neuen, verbesserten Version meiner Anwendung besser zu erklären. Ich werde auch versuchen, den Unterschied in der Stabilität mit verschiedenen Zeitintervallen und Zeitrahmen zu finden.

Brute-Force-Ansatz zur Mustersuche (Teil III): Neue Horizonte
Dieser Artikel bietet eine Fortsetzung des Brute-Force-Themas und führt neue Möglichkeiten der Marktanalyse in den Programmalgorithmus ein, wodurch die Geschwindigkeit der Analyse beschleunigt und die Qualität der Ergebnisse verbessert wird. Neue Ergänzungen ermöglichen die qualitativ hochwertigste Ansicht von globalen Mustern innerhalb dieses Ansatzes.

Kontinuierliche Walk-Forward-Optimierung (Teil 6): Logikteil und die Struktur des Auto-Optimizers
Wir haben bereits früher die Schaffung einer automatischen Walk-Forward-Optimierung in Betracht gezogen. Dieses Mal werden wir zur internen Struktur des Auto-Optimizers übergehen. Der Artikel wird für all diejenigen nützlich sein, die mit dem erstellten Projekt weiterarbeiten und es modifizieren möchten, sowie für diejenigen, die die Programmlogik verstehen möchten. Der aktuelle Artikel enthält UML-Diagramme, die die interne Struktur des Projekts und die Beziehungen zwischen den Objekten darstellen. Er beschreibt auch den Prozess des Optimierungsstarts, enthält jedoch keine Beschreibung des Implementierungsprozesses des Optimizers.


Die Behandlung der Ergebnisse der Optimierung mit einem grafischen Interface
Dies ist eine Fortsetzung der Idee der Verarbeitung und Analyse von Optimierungsergebnissen. Diesmal geht es darum, die 100 besten Optimierungsergebnisse auszuwählen und in einer GUI-Tabelle darzustellen. Der Benutzer kann eine Zeile in der Optimierungsergebnistabelle auswählen und erhält ein Saldo mehrerer Symbole und eine Drawdown-Grafik auf einer eigenen Seite.

Kontinuierliche Walk-Forward-Optimierung (Teil 5): Projektübersicht Auto-Optimizer und Erstellen einer GUI
Dieser Artikel bietet eine weitere Beschreibung der Walk-Forward-Optimierung im MetaTrader 5-Terminal. In früheren Artikeln betrachteten wir Methoden zur Erstellung und Filterung des Optimierungsberichts und begannen mit der Analyse der internen Struktur der für den Optimierungsprozess verantwortlichen Anwendung. Der Auto-Optimizer ist als C#-Anwendung implementiert und verfügt über eine eigene grafische Oberfläche. Der fünfte Artikel ist der Erstellung dieser grafischen Oberfläche gewidmet.

Parallele Partikelschwarmoptimierung
Der Artikel beschreibt eine Methode zur schnellen Optimierung unter Verwendung des Partikelschwarm-Algorithmus. Er stellt auch die Implementierung der Methode in MQL vor, die sowohl im Single-Thread-Modus innerhalb eines Expert Advisors als auch in einem parallelen Multi-Thread-Modus als Add-on, das auf lokalen Tester-Agenten läuft, verwendet werden kann.

Multibot in MetaTrader: Starten mehrerer Roboter von einem einzigen Chart aus
In diesem Artikel werde ich eine einfache Vorlage für die Erstellung eines universellen MetaTrader-Roboters besprechen, der auf mehreren Charts verwendet werden kann, während er nur mit einem Chart läuft, ohne dass jede Instanz des Roboters auf jedem einzelnen Chart konfiguriert werden muss.


MQL5 Cloud Network Kalkulieren Sie noch?
Die Veröffentlichung von MQL5 Cloud Network ist nun schon beinahe anderthalb Jahre her. Dieser Zeitpunkt läutete gewissermaßen den Beginn einer neuen Ära des algorithmischen Tradings ein - mit nur einigen wenigen Klicks stehen Tradern nun mehrere hundert bis tausend Computerkerne zur Verfügung, um Ihre Handelsstrategien zu optimieren.

Einführung in MQL5 (Teil 1): Ein Leitfaden für Einsteiger in den algorithmischen Handel
Tauchen Sie ein in die faszinierende Welt des algorithmischen Handels mit unserem einsteigerfreundlichen Leitfaden zur MQL5-Programmierung. Entdecken Sie die Grundlagen von MQL5, der Sprache, die den MetaTrader 5 antreibt, während wir die Welt des automatisierten Handels entmystifizieren. Vom Verständnis der Grundlagen bis hin zu den ersten Schritten in der Programmierung ist dieser Artikel Ihr Schlüssel, um das Potenzial des algorithmischen Handels auch ohne Programmierkenntnisse zu erschließen. Begleiten Sie uns auf eine Reise, auf der Einfachheit und Raffinesse im aufregenden Universum von MQL5 aufeinandertreffen.

Brute-Force-Ansatz zur Mustersuche (Teil IV): Minimale Funktionalität
In diesem Artikel wird eine verbesserte Brute-Force-Variante vorgestellt, die auf den im vorherigen Artikel gesetzten Zielen basiert. Ich werde versuchen, dieses Thema so breit wie möglich zu behandeln, indem ich Expert Advisors mit Einstellungen verwende, die mit dieser Methode gewonnen wurden. Eine neue Programmversion ist diesem Artikel beigefügt.

Gradient Boosting (CatBoost) für die Entwicklung von Handelssystemen. Ein naiver Zugang
Trainieren des Klassifikators CatBoost in Python und Exportieren des Modells nach mql5, sowie Parsen der Modellparameter und eines nutzerdefinierten Strategietesters. Die Python-Sprache und die MetaTrader 5-Bibliothek werden zur Vorbereitung der Daten und zum Training des Modells verwendet.


Das MQL5-Kochbuch: Abschwächen der Auswirkungen von Überanpassungen und Umgang mit mangelnden Geboten
Ganz egal, welche Handelsstrategie Sie anwenden, wird immer die Frage bestehen, welche Parameter gewählt werden sollen, um zukünftige Gewinne zu sichern. Dieser Beitrag liefert ein Beispiel für einen Expert Advisor mit der Möglichkeit, mehrere Symbolparameter gleichzeitig zu optimieren. Diese Methode dient dazu, die Auswirkungen der Überanpassung von Parametern abzuschwächen und mit Situationen umzugehen, in denen die Daten aus einem einzelnen Symbol nicht für eine eingehende Betrachtung ausreichen.

Kontinuierliche Walk-Forward-Optimierung (Teil 7): Einbinden des logischen Teils des Auto-Optimizer mit Grafiken und Steuerung
Dieser Artikel beschreibt die Verbindung des grafischen Teils des Auto-Optimizers mit seinem logischen Teil. Er betrachtet den Prozess des Optimierungsstarts, von einem Tastenklick bis zur Aufgabenumleitung zum Optimierungsmanager.

Entwicklung eines Replay Systems — Marktsimulation (Teil 17): Ticks und noch mehr Ticks (I)
Hier werden wir sehen, wie man etwas wirklich Interessantes, aber gleichzeitig auch sehr Schwieriges umsetzen kann, da bestimmte Punkte sehr verwirrend sein können. Das Schlimmste, was passieren kann, ist, dass einige Händler, die sich für Profis halten, nichts über die Bedeutung dieser Konzepte auf dem Kapitalmarkt wissen. Auch wenn wir uns hier auf die Programmierung konzentrieren, ist das Verständnis einiger der Probleme, die mit dem Markthandel verbunden sind, von entscheidender Bedeutung für das, was wir umsetzen werden.

Algorithmen zur Optimierung mit Populationen Cuckoo-Optimierungsalgorithmus (COA)
Der nächste Algorithmus, den ich besprechen werde, ist die Optimierung der Kuckuckssuche (Cockoo) mit Levy-Flügen. Dies ist einer der neuesten Optimierungsalgorithmen und ein neuer Spitzenreiter in der Rangliste.

Algorithmen zur Optimierung mit Populationen: Nelder-Mead- oder Simplex-Suchverfahren (NM)
Der Artikel stellt eine vollständige Untersuchung der Nelder-Mead-Methode vor und erklärt, wie das Simplex (Funktionsparameterraum) bei jeder Iteration geändert und neu angeordnet wird, um eine optimale Lösung zu erreichen, und beschreibt, wie die Methode verbessert werden kann.

Algorithmen zur Optimierung mit Populationen Ameisenkolonie-Optimierung (ACO)
Dieses Mal werde ich den Algorithmus der Ameisenkolonie-Optimierung analysieren. Der Algorithmus ist sehr interessant und komplex. In diesem Artikel versuche ich, eine neue Art von ACO zu schaffen.

Visuelle Auswertung der Optimierungsergebnisse
In diesem Artikel geht es um die Erstellung von Diagrammen aller Optimierungsdurchläufe und um die Auswahl des optimalen nutzerdefinierten Kriteriums. Wir werden auch sehen, wie man eine gewünschte Lösung mit wenig MQL5-Kenntnissen erstellen kann, indem man die auf der Website veröffentlichten Artikel und Forumskommentare verwendet.

Algorithmen zur Optimierung mit Populationen Grauer-Wolf-Optimierung (GWO)
Betrachten wir einen der neuesten modernen Optimierungsalgorithmen - die Grey-Wolf-Optimierung. Das originelle Verhalten bei Testfunktionen macht diesen Algorithmus zu einem der interessantesten unter den zuvor besprochenen Algorithmen. Dies ist einer der besten Algorithmen für das Training neuronaler Netze, glatte Funktionen mit vielen Variablen.

Algorithmen zur Populationsoptimierung Partikelschwarm (PSO)
In diesem Artikel werde ich den beliebten Algorithmus der Partikelschwarm-Optimierung (PSO) besprechen. Zuvor haben wir wichtige Eigenschaften von Optimierungsalgorithmen wie Konvergenz, Konvergenzrate, Stabilität und Skalierbarkeit erörtert, einen Prüfstand entwickelt und den einfachsten RNG-Algorithmus betrachtet.

Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer
Was ist Frames Analyzer? Dies ist ein Plug-in-Modul für jeden Expert Advisor zur Analyse von Optimierungsframes während der Parameteroptimierung im Strategietester, aber auch außerhalb des Testers, durch Lesen einer MQD-Datei oder einer Datenbank, die unmittelbar nach der Parameteroptimierung erstellt wird. Sie können diese Optimierungsergebnisse mit anderen Nutzern teilen, die über das Tool Frames Analyzer verfügen, um die Ergebnisse gemeinsam zu diskutieren.

Einen Expert Advisor von Grund auf entwickeln (Teil 30): CHART TRADE als Indikator?
Heute werden wir wieder Chart Trade verwenden, aber dieses Mal wird es ein On-Chart-Indikator sein, der auf dem Chart laufen kann oder auch nicht.

Backpropagation von Neuronalen Netze mit MQL5-Matrizen
Der Artikel beschreibt die Theorie und Praxis der Anwendung des Backpropagation-Algorithmus in MQL5 unter Verwendung von Matrizen. Es bietet vorgefertigte Klassen zusammen mit Beispielen von Skripten, Indikatoren und Expert Advisors.

Monte Carlo Permutationstests im MetaTrader 5
In diesem Artikel sehen wir uns an, wie wir Permutationstests auf der Grundlage von vermischten Tick-Daten für jeden Expert Advisor durchführen können, der nur Metatrader 5 verwendet.

Kontinuierliche Walk-Forward-Optimierung (Teil 8): Programmverbesserungen und Korrekturen
Das Programm wurde aufgrund von Kommentaren und Wünschen von Nutzern und Lesern dieser Artikelserie geändert. Dieser Artikel enthält eine neue Version des Auto-Optimierers. Diese Version implementiert gewünschte Funktionen und bietet weitere Verbesserungen, die ich bei der Arbeit mit dem Programm gefunden habe.

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.

Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau
Es ist uns gelungen, einen Weg zu finden, das Replay-System (Marktwiederholungssystem) auf realistische und zugängliche Weise umzusetzen. Lassen Sie uns nun unser Projekt fortsetzen und Daten hinzufügen, um das Wiedergabeverhalten zu verbessern.

Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)
Der Artikel befasst sich mit einem interessanten, von der unbelebten Natur abgeleiteten Algorithmus - intelligente Wassertropfen (IWD), die den Prozess der Flussbettbildung simulieren. Die Ideen dieses Algorithmus ermöglichten es, den bisherigen Spitzenreiter der Bewertung - SDS - deutlich zu verbessern. Der neue Führende (modifizierter SDSm) befindet sich wie üblich im Anhang.

Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA
In diesem Artikel wird die klassische Rasterstrategie untersucht, ihre Automatisierung mit einem Expert Advisor in MQL5 detailliert beschrieben und die ersten Backtest-Ergebnisse analysiert. Wir haben die Notwendigkeit einer hohen Haltekapazität für die Strategie hervorgehoben und Pläne für die Optimierung von Schlüsselparametern wie Abstand, TakeProfit und Losgrößen in zukünftigen Ausgaben skizziert. Die Reihe zielt darauf ab, die Effizienz der Handelsstrategien und die Anpassungsfähigkeit an unterschiedliche Marktbedingungen zu verbessern.

Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji
Der Metabar-Indikator erkennt mehr Kerzen als der herkömmliche Indikator. Prüfen wir, ob dies einen echten Nutzen für den automatisierten Handel bringt.

Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)
Wie wäre es, ein System zu schaffen, das es uns ermöglicht, den Markt zu studieren, wenn er geschlossen ist, oder sogar Marktsituationen zu simulieren? Wir beginnen hier eine neue Artikelserie, in der wir uns mit diesem Thema beschäftigen werden.

Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)
Das ursprüngliche Ziel dieses Artikels ist es nicht, alle Möglichkeiten des Forex-Handels abzudecken, sondern das System so anzupassen, dass Sie zumindest ein Replay des Marktes durchführen können. Wir lassen die Simulation noch einen Moment auf sich warten. Wenn wir jedoch keine Ticks, sondern nur Balken haben, können wir mit ein wenig Aufwand mögliche Abschlüsse simulieren, die auf dem Forex-Markt passieren könnten. Dies wird der Fall sein, bis wir uns mit der Anpassung des Simulators befassen. Der Versuch, mit Forex-Daten innerhalb des Systems zu arbeiten, ohne sie zu verändern, führt zu einer Reihe von Fehlern.

Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten
In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Trader eine Hilfe sein können.

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen
Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter
Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)
In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)
In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).

Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5
Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.

Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen
Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.