Artikel über das Testen von Strategien in MQL5

icon

Wie wird eine Handelsstrategie entwickelt, geschrieben und getestet, wie findet man optimale Systemparameter und analysiert Ergebnisse? Die Plattform MetaTrader bietet den Programmierern von Handelsrobotern viele Möglichkeiten, Handelideen schnell und präzise zu testen.  Erfahren Sie, wie Handelsroboter für mehrere Währungspaare getestet werden und wie man MQL5 Cloud Network für Optimierung nutzen kann.

Die Programmierer automatischer Handelssysteme können mit den Grundlagen des Testens und den Algorithmen der Tickgenerierung im Strategietester beginnen.

Neuer Artikel
letzte | beste
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.
preview
Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Im letzten Artikel haben wir einige Korrekturen vorgenommen und Tests zu unserem Replay System hinzugefügt, um die bestmögliche Stabilität zu gewährleisten. Wir haben auch mit der Erstellung und Verwendung einer Konfigurationsdatei für dieses System begonnen.
preview
Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Fish School Search (FSS, Suche mittels Fischschulen) ist ein neuer Optimierungsalgorithmus, der durch das Verhalten von Fischen in einem Schwarm inspiriert wurde, von denen die meisten (bis zu 80 %) in einer organisierten Gemeinschaft von Verwandten schwimmen. Es ist erwiesen, dass Fischansammlungen eine wichtige Rolle für die Effizienz der Nahrungssuche und den Schutz vor Räubern spielen.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
preview
Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester

Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester

Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.
preview
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.
preview
Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

In diesem Artikel werde ich Strategien für binäre Optionen in MetaTrader 5 überprüfen und optimieren.
preview
Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Zuvor haben wir die Auswahl einer Gruppe von Handelsstrategie-Instanzen mit dem Ziel, die Ergebnisse ihrer gemeinsamen Operation zu verbessern, nur für den gleichen Zeitraum bewertet, in dem die Optimierung der einzelnen Instanzen durchgeführt wurde. Mal sehen, was in der Vorwärtsperiode passiert.
preview
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
preview
Schätzung der zukünftigen Leistung mit Konfidenzintervallen

Schätzung der zukünftigen Leistung mit Konfidenzintervallen

In diesem Artikel befassen wir uns mit der Anwendung von Bootstrapping-Techniken (Bootstrapping: am eigenen Schopf aus dem Sumpf ziehen) als Mittel zur Schätzung der künftigen Leistung einer automatisierten Strategie.
preview
Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)

Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)

Der Wal-Optimierungsalgorithmus (WOA) ist ein metaheuristischer Algorithmus, der durch das Verhalten und die Jagdstrategien von Buckelwalen inspiriert wurde. Die Hauptidee von WOA ist die Nachahmung der so genannten Fressmethode „Blasennetz“, bei der Wale Blasen um ihre Beute herum erzeugen und sie dann in einer spiralförmigen Bewegung angreifen.
preview
Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

In diesem Artikel setzen wir unsere Reihe zur Kategorientheorie fort, indem wir natürliche Transformationen, eine der wichtigsten Säulen des Fachs, vorstellen. Wir befassen uns mit der scheinbar komplexen Definition und gehen dann auf Beispiele und Anwendungen dieser Serie ein: Volatilitätsprognosen.
preview
Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

In diesem Artikel werden wir einen Blick auf eine der berühmten Strategien von Bill Williams werfen, sie diskutieren und versuchen, die Strategie mit anderen Indikatoren und mit Vorhersagen zu verbessern.
preview
Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)

Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)

In diesem vierten Teil greifen wir die zuvor entwickelten Simple Hedge und Simple Grid Expert Advisors (EAs) wieder auf. Wir konzentrieren uns darauf, den Simple Grid EA durch mathematische Analysen und einen Brute-Force-Ansatz zu verfeinern, mit dem Ziel, eine optimale Strategie anzuwenden. Dieser Artikel befasst sich eingehend mit der mathematischen Optimierung der Strategie und legt den Grundstein für die künftige Erforschung der kodierungsbasierten Optimierung in späteren Ausgaben.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Nach der Optimierung der Handelsstrategie erhalten wir eine Reihe von Parametern. Wir können sie verwenden, um mehrere Instanzen von Handelsstrategien zu erstellen, die in einem EA kombiniert werden. Früher haben wir das manuell gemacht. Hier werden wir versuchen, diesen Prozess zu automatisieren.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 09): Nutzerdefinierte Ereignisse

Entwicklung eines Replay-Systems — Marktsimulation (Teil 09): Nutzerdefinierte Ereignisse

Hier sehen wir, wie nutzerdefinierte Ereignisse ausgelöst werden und wie der Indikator den Status des Wiedergabe-/Simulationsdienstes meldet.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 18): Ticks und noch mehr Ticks (II).

Entwicklung eines Replay Systems — Marktsimulation (Teil 18): Ticks und noch mehr Ticks (II).

Offensichtlich sind die aktuellen Metriken sehr weit von der idealen Zeit für die Erstellung eines 1-Minuten-Balkens entfernt. Das ist das erste, was wir in Angriff nehmen werden. Die Behebung des Synchronisationsproblems ist nicht schwierig. Das mag schwierig erscheinen, ist aber eigentlich ganz einfach. Wir haben die erforderliche Korrektur im vorigen Artikel nicht vorgenommen, da er darauf abzielte, zu erklären, wie man die Tick-Daten, die zur Erstellung der 1-Minuten-Balken im Chart verwendet wurden, in das Fenster der Marktübersicht überträgt.
preview
Entwicklung eines Replay System (Teil 28): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Entwicklung eines Replay System (Teil 28): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Als man begann, die ersten rechenfähigen Systeme zu entwickeln, war für alles die Mitwirkung von Ingenieuren erforderlich, die das Projekt sehr gut kennen mussten. Wir sprechen von den Anfängen der Computertechnologie, einer Zeit, in der es noch nicht einmal Terminals zum Programmieren gab. Im Laufe der Entwicklung, als immer mehr Menschen daran interessiert waren, etwas zu erschaffen, entstanden neue Ideen und Wege der Programmierung, die das frühere Wechseln der Steckverbindungen ersetzten. Zu diesem Zeitpunkt erschienen die ersten Terminals.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 08): Sperren des Indikators

Entwicklung eines Replay-Systems — Marktsimulation (Teil 08): Sperren des Indikators

In diesem Artikel werden wir uns ansehen, wie man den Indikator sperren kann, indem man einfach die Sprache MQL5 verwendet, und zwar auf eine sehr interessante und erstaunliche Weise.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Diesmal wollen wir einen anderen Ansatz wählen, um das 1-Minuten-Ziel zu erreichen. Diese Aufgabe ist jedoch nicht so einfach, wie man vielleicht denkt.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 06): Erste Verbesserungen (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 06): Erste Verbesserungen (I)

In diesem Artikel werden wir mit der Stabilisierung des gesamten Systems beginnen, ohne die wir möglicherweise nicht in der Lage sind, mit den nächsten Schritten fortzufahren.
preview
Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Von allen Dingen, die wir bisher entwickelt haben, ist dieses System, wie Sie wahrscheinlich bemerken und letztendlich zustimmen werden, das komplexeste. Nun müssen wir etwas sehr Einfaches tun: unser System soll den Betrieb eines Handelsservers simulieren. Die Notwendigkeit, die Funktionsweise des Handelsservers genau zu implementieren, scheint eine Selbstverständlichkeit zu sein. Zumindest in Worten. Aber wir müssen dies so tun, dass alles nahtlos und transparent für den Nutzer des Wiedergabe-/Simulationssystems ist.
preview
Algorithmen zur Optimierung mit Populationen: Spiralförmige Dynamische Optimization (SDO) Algorithmus

Algorithmen zur Optimierung mit Populationen: Spiralförmige Dynamische Optimization (SDO) Algorithmus

In diesem Artikel wird ein Optimierungsalgorithmus vorgestellt, der auf den Mustern der Konstruktion spiralförmiger Trajektorien in der Natur, wie z. B. bei Muschelschalen, basiert - der Algorithmus der spiralförmigen dynamischen Optimierung (SDO). Ich habe den von den Autoren vorgeschlagenen Algorithmus gründlich überarbeitet und verändert. Der Artikel befasst sich mit der Notwendigkeit dieser Änderungen.
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus Simulated Isotropic Annealing (SIA). Teil II

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Simulated Isotropic Annealing (SIA). Teil II

Der erste Teil war dem bekannten und beliebten Algorithmus des Simulated Annealing gewidmet. Wir haben ihre Vor- und Nachteile gründlich abgewogen. Der zweite Teil des Artikels ist der radikalen Umgestaltung des Algorithmus gewidmet, die ihn zu einem neuen Optimierungsalgorithmus macht, dem Simulated Isotropic Annealing (SIA).
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 15): Die Geburt des SIMULATORS (V) - RANDOM WALK

Entwicklung eines Replay Systems — Marktsimulation (Teil 15): Die Geburt des SIMULATORS (V) - RANDOM WALK

In diesem Artikel werden wir die Entwicklung eines Simulators für unser System abschließen. Das Hauptziel besteht darin, den im vorherigen Artikel beschriebenen Algorithmus zu konfigurieren. Dieser Algorithmus zielt darauf ab, eine zufällige Bewegung, einen „RANDOM WALK“ zu erzeugen. Um das heutige Material zu verstehen, ist es daher notwendig, den Inhalt der früheren Artikel zu kennen. Wenn Sie die Entwicklung des Simulators nicht verfolgt haben, empfehle ich Ihnen, diese Sequenz von Anfang an zu lesen. Andernfalls könnten Sie verwirrt sein über das, was hier erklärt wird.
preview
Algorithmen zur Optimierung mit Populationen: der Algorithmus Simulated Annealing (SA). Teil I

Algorithmen zur Optimierung mit Populationen: der Algorithmus Simulated Annealing (SA). Teil I

Der Algorithmus des Simulated Annealing ist eine Metaheuristik, die vom Metallglühprozess inspiriert ist. In diesem Artikel führen wir eine gründliche Analyse des Algorithmus durch und räumen mit einer Reihe von weit verbreiteten Überzeugungen und Mythen rund um diese weithin bekannte Optimierungsmethode auf. Der zweite Teil des Artikels befasst sich mit dem nutzerdefinierten Algorithmus Simulated Isotropic Annealing (SIA).
preview
Developing a Replay System — Market simulation (Part 13): Die Geburt des SIMULATORS (III)

Developing a Replay System — Market simulation (Part 13): Die Geburt des SIMULATORS (III)

Hier werden wir einige Elemente im Zusammenhang mit der Arbeit im nächsten Artikel vereinfachen. Ich erkläre auch, wie Sie sich vorstellen können, was der Simulator in Bezug auf die Zufälligkeit erzeugt.
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)

In diesem Artikel werden wir einen weiteren Optimierungsalgorithmus betrachten, der von der unbelebten Natur inspiriert ist - den CSS-Algorithmus (Charged System Search, Suche geladener Systeme). In diesem Artikel wird ein neuer Optimierungsalgorithmus vorgestellt, der auf den Prinzipien der Physik und Mechanik beruht.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 12): Die Geburt des SIMULATORS (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 12): Die Geburt des SIMULATORS (II)

Die Entwicklung eines Simulators kann viel interessanter sein, als es scheint. Heute gehen wir ein paar Schritte weiter in diese Richtung, denn die Dinge werden immer interessanter.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 14): Die Geburt des SIMULATORS (IV)

Entwicklung eines Replay Systems — Marktsimulation (Teil 14): Die Geburt des SIMULATORS (IV)

In diesem Artikel werden wir die Entwicklungsphase des Simulators fortsetzen. Diesmal werden wir sehen, wie wir eine Bewegung vom Typ RANDOM WALK effektiv erstellen können. Diese Art von Bewegung ist sehr interessant, denn sie bildet die Grundlage für alles, was auf dem Kapitalmarkt geschieht. Darüber hinaus werden wir beginnen, einige Konzepte zu verstehen, die für die Durchführung von Marktanalysen grundlegend sind.
preview
Kategorientheorie in MQL5 (Teil 16): Funktoren mit mehrschichtigen Perceptrons

Kategorientheorie in MQL5 (Teil 16): Funktoren mit mehrschichtigen Perceptrons

In diesem Artikel, dem 16. in unserer Reihe, geht es weiter mit einem Blick auf Funktoren und wie sie mit künstlichen neuronalen Netzen implementiert werden können. Wir weichen von unserem bisherigen Ansatz der Volatilitätsprognose ab und versuchen, eine nutzerdefinierte Signalklasse zum Setzen von Ein- und Ausstiegssignalen zu implementieren.
preview
Algorithmen zur Optimierung mit Populationen: Mikro-Künstliches Immunsystem (Mikro-AIS)

Algorithmen zur Optimierung mit Populationen: Mikro-Künstliches Immunsystem (Mikro-AIS)

Der Artikel befasst sich mit einer Optimierungsmethode, die auf den Prinzipien des körpereigenen Immunsystems basiert - Mikro-Künstliches Immunsystem (Micro Artificial Immune System, Micro-AIS) - eine Modifikation von AIS. Micro-AIS verwendet ein einfacheres Modell des Immunsystems und einfache Informationsverarbeitungsprozesse des Immunsystems. In dem Artikel werden auch die Vor- und Nachteile von Mikro-AIS im Vergleich zu herkömmlichen AIS erörtert.
preview
Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS)

Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS)

Der Artikel behandelt die stochastische Diffusionssuche (SDS), einen sehr leistungsfähigen und effizienten Optimierungsalgorithmus, der auf den Prinzipien des Random Walk basiert. Der Algorithmus ermöglicht es, optimale Lösungen in komplexen mehrdimensionalen Räumen zu finden, wobei er sich durch eine hohe Konvergenzgeschwindigkeit und die Fähigkeit auszeichnet, lokale Extrema zu vermeiden.
Algorithmen zur Populationsoptimierung
Algorithmen zur Populationsoptimierung

Algorithmen zur Populationsoptimierung

Dies ist ein einführender Artikel über die Klassifizierung von Optimierungsalgorithmen (OA). In dem Artikel wird versucht, einen Prüfstand (eine Reihe von Funktionen) zu erstellen, der zum Vergleich von OAs und vielleicht zur Ermittlung des universellsten Algorithmus unter allen bekannten Algorithmen verwendet werden soll.
preview
Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES

Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES

Der Artikel behandelt eine Gruppe von Optimierungsalgorithmen, die als Evolutionsstrategien (ES) bekannt sind. Sie gehören zu den allerersten Populationsalgorithmen, die evolutionäre Prinzipien für die Suche nach optimalen Lösungen nutzen. Wir werden Änderungen an den herkömmlichen ES-Varianten vornehmen und die Testfunktion und die Prüfstandsmethodik für die Algorithmen überarbeiten.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Um die Daten, die die Balken bilden, nutzen zu können, müssen wir auf das Replay verzichten und einen Simulator entwickeln. Wir werden 1-Minuten-Balken verwenden, weil sie den geringsten Schwierigkeitsgrad aufweisen.
preview
Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb

Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb

Der Artikel behandelt die praktischen Aspekte der Verwendung von Optimierungsalgorithmen, um die besten EA-Parameter im laufenden Betrieb zu finden, sowie die Virtualisierung von Handelsoperationen und EA-Logik. Der Artikel kann als Anleitung für die Implementierung von Optimierungsalgorithmen in einen EA verwendet werden.