Artikel über das Testen von Strategien in MQL5

icon

Wie wird eine Handelsstrategie entwickelt, geschrieben und getestet, wie findet man optimale Systemparameter und analysiert Ergebnisse? Die Plattform MetaTrader bietet den Programmierern von Handelsrobotern viele Möglichkeiten, Handelideen schnell und präzise zu testen.  Erfahren Sie, wie Handelsroboter für mehrere Währungspaare getestet werden und wie man MQL5 Cloud Network für Optimierung nutzen kann.

Die Programmierer automatischer Handelssysteme können mit den Grundlagen des Testens und den Algorithmen der Tickgenerierung im Strategietester beginnen.

Neuer Artikel
letzte | beste
preview
Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen

Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen

In diesem Artikel werden wir uns den Mersenne-Twister-Zufallszahlengenerator ansehen und ihn mit dem Standardgenerator in MQL5 vergleichen. Wir werden auch herausfinden, welchen Einfluss die Qualität des Zufallszahlengenerators auf die Ergebnisse der Optimierungsalgorithmen hat.
preview
Entwicklung eines Replay Systems (Teil 46): Chart Trade Projekt (V)

Entwicklung eines Replay Systems (Teil 46): Chart Trade Projekt (V)

Sind Sie es leid, Zeit mit der Suche nach genau der Datei zu verschwenden, die Ihre Anwendung zum Funktionieren braucht? Wie wäre es, alles in die ausführbare Datei aufzunehmen? Auf diese Weise müssen Sie nicht nach den Dingen suchen. Ich weiß, dass viele Menschen diese Form der Verteilung und Speicherung nutzen, aber es gibt einen viel geeigneteren Weg. Zumindest was die Verteilung von ausführbaren Dateien und deren Speicherung betrifft. Die hier vorgestellte Methode kann sehr nützlich sein, da Sie den MetaTrader 5 selbst als hervorragenden Assistenten verwenden können, ebenso wie MQL5. Außerdem ist es nicht so schwer zu verstehen.
preview
Kategorientheorie in MQL5 (Teil 4): Spannen, Experimente und Kompositionen

Kategorientheorie in MQL5 (Teil 4): Spannen, Experimente und Kompositionen

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)

Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)

In diesem Artikel werden wir den Mauszeiger ändern, um die Interaktion mit dem Kontrollindikator zu ermöglichen und einen zuverlässigen und stabilen Betrieb zu gewährleisten.
preview
Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)

Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)

Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.
preview
Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Ein Hinweis: Obwohl der Code für einen Dienst in diesem Artikel nicht enthalten ist und erst im nächsten Artikel zur Verfügung gestellt wird, werde ich ihn erläutern, da wir denselben Code als Sprungbrett für unsere eigentliche Entwicklung verwenden werden. Seien Sie also aufmerksam und geduldig. Warten Sie auf den nächsten Artikel, denn jeden Tag wird es interessanter.
preview
Nutzerdefinierter Indikator: Darstellen von partiellen Eintritts-, Austritts- und Stornogeschäften für Netting-Konten

Nutzerdefinierter Indikator: Darstellen von partiellen Eintritts-, Austritts- und Stornogeschäften für Netting-Konten

In diesem Artikel werden wir uns eine nicht standardisierte Methode zur Erstellung eines Indikators in MQL5 ansehen. Anstatt sich auf einen Trend oder ein Chartmuster zu konzentrieren, wird unser Ziel sein, unsere eigenen Positionen zu verwalten, einschließlich partieller Ein- und Ausstiege. Wir werden ausgiebig Gebrauch von dynamischen Matrizen und einigen Handelsfunktionen machen, die sich auf die Handelshistorie und offene Positionen beziehen, um auf dem Chart anzuzeigen, wo diese Geschäfte getätigt wurden.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Die erste Stufe der automatischen Optimierung haben wir bereits umgesetzt. Wir führen die Optimierung für verschiedene Symbole und Zeiträume nach mehreren Kriterien durch und speichern Informationen über die Ergebnisse jedes Durchgangs in der Datenbank. Nun werden wir die besten Gruppen von Parametersätzen aus den in der ersten Stufe gefundenen auswählen.
preview
Algorithmus zur Optimierung der Migration der Tiere (AMO)

Algorithmus zur Optimierung der Migration der Tiere (AMO)

Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.
preview
Entwicklung eines Replay Systems (Teil 44): Chart Trade Projekt (III)

Entwicklung eines Replay Systems (Teil 44): Chart Trade Projekt (III)

Im vorherigen Artikel habe ich erklärt, wie Sie Vorlagedaten zur Verwendung in OBJ_CHART manipulieren können. In diesem Artikel habe ich das Thema nur umrissen, ohne auf Einzelheiten einzugehen, da die Arbeit in dieser Version sehr vereinfacht war. Dies geschah, um die Erklärung des Inhalts zu erleichtern, denn trotz der scheinbaren Einfachheit vieler Dinge waren einige davon nicht so offensichtlich, und ohne das Verständnis des einfachsten und grundlegendsten Teils wäre man nicht in der Lage, das gesamte Bild wirklich zu verstehen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.
preview
Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

In diesem Artikel werden wir uns ansehen, was mit ein wenig Code-Verfeinerung erreicht werden kann. Diese Verfeinerung zielt darauf ab, unseren Code zu vereinfachen, mehr Gebrauch von MQL5-Bibliotheksaufrufen zu machen und ihn vor allem viel stabiler, sicherer und einfacher in anderen Projekten zu verwenden, die wir in Zukunft entwickeln werden.
preview
Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse

Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse

In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.
preview
Vom Neuling zum Experten: Programmieren von Kerzen

Vom Neuling zum Experten: Programmieren von Kerzen

In diesem Artikel machen wir den ersten Schritt in die MQL5-Programmierung, auch für absolute Anfänger. Wir zeigen Ihnen, wie Sie bekannte Kerzenmuster in einen voll funktionsfähigen nutzerdefinierten Indikator verwandeln können. Kerzenmuster sind wertvoll, da sie reale Kursbewegungen widerspiegeln und Marktverschiebungen signalisieren. Anstatt die Charts manuell zu scannen - ein Ansatz, der fehleranfällig und ineffizient ist - werden wir besprechen, wie Sie den Prozess mit einem Indikator automatisieren können, der Muster für Sie identifiziert und kennzeichnet. Auf dem Weg dorthin werden wir uns mit Schlüsselkonzepten wie Indexierung, Zeitreihen, Average True Range (für Genauigkeit bei schwankender Marktvolatilität) und der Entwicklung einer nutzerdefinierten, wiederverwendbaren Bibliothek von Kerzen-Mustern für den Einsatz in zukünftigen Projekten beschäftigen.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
preview
Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5

Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5

In diesem Artikel wird das Potenzial des Value-at-Risk (VaR)-Modells für die Optimierung von Portfolios in mehreren Währungen untersucht. Mit Hilfe von Python und der Funktionalität von MetaTrader 5 demonstrieren wir, wie man eine VaR-Analyse für eine effiziente Kapitalallokation und Positionsverwaltung implementiert. Von den theoretischen Grundlagen bis zur praktischen Umsetzung behandelt der Artikel alle Aspekte der Anwendung eines der robustesten Risikoberechnungssysteme - VaR - im algorithmischen Handel.
preview
Entwicklung eines Replay Systems (Teil 51): Die Dinge werden kompliziert (III)

Entwicklung eines Replay Systems (Teil 51): Die Dinge werden kompliziert (III)

In diesem Artikel werden wir uns mit einem der schwierigsten Probleme im Bereich der MQL5-Programmierung befassen: wie man eine Chart-ID korrekt erhält und warum Objekte manchmal nicht im Chart gezeichnet werden. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Replay Systems (Teil 50): Die Dinge werden kompliziert (II)

Entwicklung eines Replay Systems (Teil 50): Die Dinge werden kompliziert (II)

Wir werden das Problem der Chart-ID lösen und gleichzeitig dem Nutzer die Möglichkeit geben, eine persönliche Vorlage für die Analyse und Simulation des gewünschten Assets zu verwenden. Das hier vorgestellte Material dient ausschließlich didaktischen Zwecken und sollte in keiner Weise als Anwendung für einen anderen Zweck als das Studium und die Beherrschung der vorgestellten Konzepte betrachtet werden.
preview
Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

In diesem Artikel werden wir die erste Phase der Konstruktion abschließen. Obwohl dieser Teil recht schnell erledigt ist, werde ich auf Details eingehen, die zuvor nicht besprochen wurden. Ich werde einige Punkte erklären, die viele nicht verstehen. Wissen Sie, warum Sie die Umschalttaste oder die Strg-Taste drücken müssen?
preview
Algorithmus für künstliche elektrische Felder (AEFA)

Algorithmus für künstliche elektrische Felder (AEFA)

In diesem Artikel wird ein Algorithmus für ein künstliches elektrisches Feld (AEFA) vorgestellt, der durch das Coulombsche Gesetz der elektrostatischen Kraft inspiriert ist. Der Algorithmus simuliert elektrische Phänomene, um komplexe Optimierungsprobleme mit Hilfe geladener Teilchen und ihrer Wechselwirkungen zu lösen. AEFA weist im Zusammenhang mit anderen Algorithmen, die sich auf Naturgesetze beziehen, einzigartige Eigenschaften auf.
preview
Entwicklung eines Wiedergabesystems (Teil 47): Chart Trade Projekt (VI)

Entwicklung eines Wiedergabesystems (Teil 47): Chart Trade Projekt (VI)

Schließlich beginnt unser Indikator Chart Trade mit dem EA zu interagieren, sodass die Informationen interaktiv übertragen werden können. Daher werden wir in diesem Artikel den Indikator verbessern, sodass er funktional genug ist, um zusammen mit jedem EA verwendet zu werden. Dadurch können wir auf den Indikator Chart Trade zugreifen und mit ihm arbeiten, als ob er tatsächlich mit einem EA verbunden wäre. Aber wir werden es auf eine viel interessantere Weise tun als bisher.
preview
Entwicklung eins Replay Systems (Teil 49): Die Dinge werden kompliziert (I)

Entwicklung eins Replay Systems (Teil 49): Die Dinge werden kompliziert (I)

In diesem Artikel werden wir die Dinge ein wenig komplizierter machen. Anhand der in den vorangegangenen Artikeln gezeigten Vorgehensweise werden wir die Vorlagendatei öffnen, damit der Nutzer seine eigene Vorlage verwenden kann. Ich werde jedoch nach und nach Änderungen vornehmen, da ich auch den Indikator verfeinern werde, um die Belastung des MetaTrader 5 zu verringern.
preview
Entwicklung eines Replay-Systems (Teil 66): Abspielen des Dienstes (VII)

Entwicklung eines Replay-Systems (Teil 66): Abspielen des Dienstes (VII)

In diesem Artikel werden wir die erste Lösung implementieren, mit der wir bestimmen können, wann ein neuer Balken im Chart erscheinen kann. Diese Lösung ist in einer Vielzahl von Situationen anwendbar. Das Verständnis seiner Entwicklung wird Ihnen helfen, mehrere wichtige Aspekte zu verstehen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Erweiterte Speicherverwaltung und Optimierungstechniken in MQL5

Erweiterte Speicherverwaltung und Optimierungstechniken in MQL5

Entdecken Sie praktische Techniken zur Optimierung der Speichernutzung in MQL5-Handelssystemen. Lernen Sie, effiziente, stabile und schnell arbeitende Expert Advisors und Indikatoren zu erstellen. Wir werden untersuchen, wie der Speicher in MQL5 wirklich funktioniert, die häufigsten Fallen, die Ihre Systeme verlangsamen oder zum Ausfall führen, und - was am wichtigsten ist - wie man sie beheben kann.
preview
Entwicklung eines Replay Systems (Teil 48): Das Konzept eines Dienstes verstehen

Entwicklung eines Replay Systems (Teil 48): Das Konzept eines Dienstes verstehen

Wie wäre es, etwas Neues zu lernen? In diesem Artikel erfahren Sie, wie Sie Skripte in Dienste umwandeln können und warum dies sinnvoll ist.
preview
Entwicklung eines Replay-Systems (Teil 59): Eine neue Zukunft

Entwicklung eines Replay-Systems (Teil 59): Eine neue Zukunft

Wenn wir die unterschiedlichen Ideen richtig verstehen, können wir mit weniger Aufwand mehr erreichen. In diesem Artikel sehen wir uns an, warum es notwendig ist, eine Vorlage zu konfigurieren, bevor der Dienst mit dem Chart interagieren kann. Und was wäre, wenn wir den Mauszeiger verbessern würden, damit wir mehr damit machen können?
preview
Aufbau des Kerzenmodells Trend Constraint (Teil 10): Strategisches Goldenes und Todeskreuz (EA)

Aufbau des Kerzenmodells Trend Constraint (Teil 10): Strategisches Goldenes und Todeskreuz (EA)

Wussten Sie, dass die Strategien des Goldenen Kreuzes und des Todeskreuzes, die auf dem Überkreuzen gleitender Durchschnitte basieren, zu den zuverlässigsten Indikatoren für die Erkennung langfristiger Markttrends gehören? Ein Goldenes Kreuz signalisiert einen Aufwärtstrend, wenn der kürzerer gleitender Durchschnitt über den längeren Durchschnitt kreuzt, während ein Todeskreuz einen Abwärtstrend anzeigt, wenn der kürzere Durchschnitt den längeren nach nuten kreuzt. Trotz ihrer Einfachheit und Wirksamkeit führt die manuelle Anwendung dieser Strategien häufig zu verpassten Gelegenheiten oder verzögerten Abschlüssen.
preview
Adaptive Social Behavior Optimization (ASBO): Das Verfahren von Schwefel und Box-Muller

Adaptive Social Behavior Optimization (ASBO): Das Verfahren von Schwefel und Box-Muller

Dieser Artikel bietet einen faszinierenden Einblick in die Welt des Sozialverhaltens lebender Organismen und dessen Einfluss auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden untersuchen, wie die in lebenden Gesellschaften beobachteten Prinzipien von Führung, Nachbarschaft und Kooperation die Entwicklung innovativer Optimierungsalgorithmen inspirieren.
preview
Entwicklung eines Replay Systems (Teil 56): Anpassen der Module

Entwicklung eines Replay Systems (Teil 56): Anpassen der Module

Obwohl die Module bereits ordnungsgemäß miteinander interagieren, tritt ein Fehler auf, wenn versucht wird, den Mauszeiger im Wiedergabedienst zu verwenden. Wir müssen dies beheben, bevor wir zum nächsten Schritt übergehen. Außerdem werden wir ein Problem im Code des Mausindikators beheben. Diese Version wird also endlich stabil und ordentlich poliert sein.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Bisher haben wir die Automatisierung des Starts von sequentiellen Verfahren zur Optimierung von EAs ausschließlich im Standard-Strategietester betrachtet. Was aber, wenn wir zwischen diesen Starts die gewonnenen Daten mit anderen Mitteln bearbeiten wollen? Wir werden versuchen, die Möglichkeit hinzuzufügen, neue Optimierungsstufen zu erstellen, die von in Python geschriebenen Programmen ausgeführt werden.
preview
Optimierungsmethoden der ALGLIB-Bibliothek (Teil I)

Optimierungsmethoden der ALGLIB-Bibliothek (Teil I)

In diesem Artikel werden wir uns mit den Optimierungsmethoden der ALGLIB-Bibliothek für MQL5 vertraut machen. Der Artikel enthält einfache und anschauliche Beispiele für die Verwendung von ALGLIB zur Lösung von Optimierungsproblemen, die das Erlernen der Methoden so einfach wie möglich machen. Wir werden uns die Verbindung von Algorithmen wie BLEIC, L-BFGS und NS im Detail ansehen und sie zur Lösung eines einfachen Testproblems verwenden.
preview
Entwicklung eines Replay-Systems (Teil 75): Neuer Chart-Handel (II)

Entwicklung eines Replay-Systems (Teil 75): Neuer Chart-Handel (II)

In diesem Artikel geht es um die Klasse C_ChartFloatingRAD. Das ist es, was Chart Trade ausmacht. Doch damit ist die Erklärung noch nicht zu Ende. Wir werden sie im nächsten Artikel vervollständigen, da der Inhalt dieses Artikels recht umfangreich ist und ein tiefes Verständnis erfordert. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Optimierungsmethoden der ALGLIB-Bibliothek (Teil II)

Optimierungsmethoden der ALGLIB-Bibliothek (Teil II)

In diesem Artikel werden wir die verbleibenden Optimierungsmethoden aus der ALGLIB-Bibliothek weiter untersuchen, mit besonderem Augenmerk auf deren Prüfung auf komplexe mehrdimensionale Funktionen. So können wir nicht nur die Effizienz der einzelnen Algorithmen bewerten, sondern auch ihre Stärken und Schwächen unter verschiedenen Bedingungen ermitteln.
preview
Artificial Showering Algorithm (ASHA)

Artificial Showering Algorithm (ASHA)

Der Artikel stellt den Künstlichen Duschalgorithmus (ASHA) vor, eine neue metaheuristische Methode, die für die Lösung allgemeiner Optimierungsprobleme entwickelt wurde. Auf der Grundlage der Simulation von Wasserfluss- und Akkumulationsprozessen konstruiert dieser Algorithmus das Konzept eines idealen Feldes, in dem jede Einheit der Ressource (Wasser) aufgerufen ist, eine optimale Lösung zu finden. Wir werden herausfinden, wie ASHA Fließ- und Akkumulationsprinzipien anpasst, um Ressourcen in einem Suchraum effizient zuzuweisen, und seine Implementierung und Testergebnisse sehen.
preview
Zyklen im Handel

Zyklen im Handel

In diesem Artikel geht es um die Verwendung von Zyklen im Handel. Wir werden den Aufbau einer Handelsstrategie auf der Grundlage zyklischer Modelle in Betracht ziehen.
preview
Entwicklung eines Replay Systems (Teil 58): Wiederaufnahme der Arbeit am Dienst

Entwicklung eines Replay Systems (Teil 58): Wiederaufnahme der Arbeit am Dienst

Nach einer Pause in der Entwicklung und Verbesserung des Dienstes für Replay/Simulator nehmen wir die Arbeit daran wieder auf. Da wir nun die Verwendung von Ressourcen wie Terminalglobals aufgegeben haben, müssen wir einige Teile des Systems komplett umstrukturieren. Keine Sorge, dieser Prozess wird im Detail erklärt, sodass jeder die Entwicklung unseres Dienstes verfolgen kann.
preview
Entwicklung eines Replay-Systems (Teil 70): Das richtige Bestimmen der Zeit (III)

Entwicklung eines Replay-Systems (Teil 70): Das richtige Bestimmen der Zeit (III)

In diesem Artikel erfahren Sie, wie Sie die Funktion CustomBookAdd richtig und effektiv nutzen können. Trotz ihrer scheinbaren Einfachheit hat sie viele Nuancen. So können Sie dem Mauszeiger beispielsweise mitteilen, ob ein nutzerdefiniertes Symbol gerade versteigert oder gehandelt wird oder ob der Markt geschlossen ist. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 18): Automatisierte Gruppenauswahl unter Berücksichtigung der Vorwärtszeitraum

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 18): Automatisierte Gruppenauswahl unter Berücksichtigung der Vorwärtszeitraum

Fahren wir fort, die Schritte zu automatisieren, die wir zuvor manuell durchgeführt haben. Diesmal kehren wir zur Automatisierung der zweiten Phase zurück, d. h. zur Auswahl der optimalen Gruppe von Einzelinstanzen von Handelsstrategien, und ergänzen sie durch die Möglichkeit, die Ergebnisse der Instanzen in dem Vorwärtszeitraum zu berücksichtigen.
preview
Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Der erste einer Reihe von Artikeln, die sich mit der Mathematik der nutzerdefinierten Kriterien befassen, mit besonderem Schwerpunkt auf nichtlinearen Funktionen, die in neuronalen Netzen verwendet werden, MQL5-Code für die Implementierung und die Verwendung von gezielten und korrigierenden Offsets.
preview
Manuelle Backtest leicht gemacht: Aufbau eines nutzerdefinierten Toolkits für Strategietester in MQL5

Manuelle Backtest leicht gemacht: Aufbau eines nutzerdefinierten Toolkits für Strategietester in MQL5

In diesem Artikel entwickeln wir ein nutzerdefiniertes MQL5-Toolkit für einfache manuelle Backtests im Strategy Tester. Wir erläutern den Aufbau und die Umsetzung des Systems und konzentrieren uns dabei auf interaktive Handelskontrollen. Wir zeigen dann, wie man damit Strategien effektiv testen kann