Find us on Facebook!
Join our fan page
Join our fan page
Schreibe einen Artikel
und wir zahlen für ihn 200,00 Dollar!
und wir zahlen für ihn 200,00 Dollar!
MetaTrader 5 herunterladen und automatisch handeln

Entwicklung eines Qualitätsfaktors für Expert Advisors
In diesem Artikel sehen wir uns an, wie Sie eine Qualitätsbewertung entwickeln, die Ihr Expert Advisor im Strategietester anzeigen kann. Wir werden uns zwei bekannte Berechnungsmethoden ansehen – Van Tharp und Sunny Harris.

Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic
Wir setzen unsere Diskussion über Algorithmen des Verstärkungslernens zur Lösung von Problemen im kontinuierlichen Aktionsraum fort. In diesem Artikel werde ich den Soft Actor-Critic (SAC) Algorithmus vorstellen. Der Hauptvorteil von SAC ist die Fähigkeit, optimale Strategien zu finden, die nicht nur die erwartete Belohnung maximieren, sondern auch eine maximale Entropie (Vielfalt) von Aktionen aufweisen.

Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten
Im vorigen Artikel haben wir die DDPG-Methode vorgestellt, mit der Modelle in einem kontinuierlichen Aktionsraum trainiert werden können. Wie andere Q-Learning-Methoden neigt jedoch auch DDPG dazu, die Werte der Q-Funktion zu überschätzen. Dieses Problem führt häufig dazu, dass ein Agent mit einer suboptimalen Strategie ausgebildet wird. In diesem Artikel werden wir uns einige Ansätze zur Überwindung des genannten Problems ansehen.

Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum
In diesem Artikel erweitern wir das Aufgabenspektrum unseres Agenten. Der Ausbildungsprozess wird einige Aspekte des Geld- und Risikomanagements umfassen, die ein wesentlicher Bestandteil jeder Handelsstrategie sind.

Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)
In diesem Artikel werfen wir einen Blick auf einen weiteren Ansatz des Reinforcement Learning. Es wird als Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) bezeichnet. Bei diesem Ansatz wird ein Agent darauf trainiert, verschiedene Ziele in bestimmten Szenarien zu erreichen.

Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands
Das Training nützlicher Fertigkeiten ohne explizite Belohnungsfunktion ist eine der größten Herausforderungen beim hierarchischen Verstärkungslernen. Zuvor haben wir bereits zwei Algorithmen zur Lösung dieses Problems kennengelernt. Die Frage nach der Vollständigkeit der Umweltforschung bleibt jedoch offen. In diesem Artikel wird ein anderer Ansatz für das Training von Fertigkeiten vorgestellt, dessen Anwendung direkt vom aktuellen Zustand des Systems abhängt.

Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik
Im vorangegangenen Artikel haben wir die DIAYN-Methode vorgestellt, die einen Algorithmus zum Erlernen einer Vielzahl von Fertigkeiten (skills) bietet. Die erworbenen Fertigkeiten können für verschiedene Aufgaben genutzt werden. Aber solche Fertigkeiten können ziemlich unberechenbar sein, was ihre Anwendung schwierig machen kann. In diesem Artikel wird ein Algorithmus zum Erlernen vorhersehbarer Fertigkeiten vorgestellt.

Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion
Das Problem des Verstärkungslernens liegt in der Notwendigkeit, eine Belohnungsfunktion zu definieren. Sie kann komplex oder schwer zu formalisieren sein. Um dieses Problem zu lösen, werden aktivitäts- und umweltbasierte Ansätze zum Erlernen von Fähigkeiten ohne explizite Belohnungsfunktion erforscht.

Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen
Im Kontext des Verstärkungslernens kann die Prokrastination (Zögern) eines Modells mehrere Ursachen haben. Der Artikel befasst sich mit einigen der möglichen Ursachen für Prokrastination bei Modellen und mit Methoden zu deren Überwindung.

Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle
Der Artikel beschreibt hierarchische Trainingsmodelle, die einen effektiven Ansatz für die Lösung komplexer maschineller Lernprobleme bieten. Hierarchische Modelle bestehen aus mehreren Ebenen, von denen jede für verschiedene Aspekte der Aufgabe zuständig ist.

Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen
In diesem Artikel wird die Verwendung des Go-Explore-Algorithmus über einen langen Trainingszeitraum erörtert, da die Strategie der zufälligen Aktionsauswahl mit zunehmender Trainingszeit möglicherweise nicht zu einem profitablen Durchgang führt.

Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung
Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.

Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)
Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 1): Indikatorsignale basierend auf ADX in Kombination mit Parabolic SAR
Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der mit mehr als einem Symbolpaar aus einem Symbolchart handeln kann (Positionen öffnen, schließen und verwalten).

Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)
Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.

ONNX-Modelle in Klassen packen
Die objektorientierte Programmierung ermöglicht die Erstellung eines kompakteren Codes, der leicht zu lesen und zu ändern ist. Hier sehen wir uns das Beispiel für drei ONNX-Modelle an.

Mean Reversion, eine einfache Handelsstrategie
Mean Reversion ist eine Form des entgegengesetzten Handels, bei der der Händler erwartet, dass der Kurs zu einer Art Gleichgewicht zurückkehrt, das im Allgemeinen durch einen Mittelwert oder eine andere Statistik der zentralen Tendenz gemessen wird.

Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen
Dieser Artikel, der Teil einer Serie ist, die der kategorientheoretischen Implementierung von Graphen in MQL5 folgt, befasst sich mit Ordnungen. Wir untersuchen, wie Konzepte der Ordnungstheorie monoide Mengen bei der Information über Handelsentscheidungen unterstützen können, indem wir zwei wichtige Ordnungstypen betrachten.

Kategorientheorie in MQL5 (Teil 11): Graphen
Dieser Artikel ist die Fortsetzung einer Serie, die sich mit der Implementierung der Kategorientheorie in MQL5 beschäftigt. Hier untersuchen wir, wie die Graphentheorie mit Monoiden und anderen Datenstrukturen bei der Entwicklung einer Ausstiegsstrategie für ein Handelssystem integriert werden kann.

Kann Heiken-Ashi in Kombination mit gleitenden Durchschnitten gute Signale liefern?
Kombinationen von Strategien können bessere Chancen bieten. Wir können Indikatoren oder Muster miteinander kombinieren, oder noch besser, Indikatoren mit Mustern, sodass wir einen zusätzlichen Bestätigungsfaktor erhalten. Gleitende Durchschnitte helfen uns, den Trend zu bestätigen und zu verfolgen. Sie sind die bekanntesten technischen Indikatoren, und das liegt an ihrer Einfachheit und ihrer erwiesenen Fähigkeit, einen Mehrwert für Analysen zu schaffen.

Die Wiederaufnahme einer alten Trendhandelsstrategie: Zwei Stochastik-Oszillatoren, ein MA und Fibonacci
Eine alte Handelsstrategie. In diesem Artikel wird eine der Strategien vorgestellt, mit denen sich der Trend auf rein technische Weise verfolgen lässt. Die Strategie ist rein technisch und verwendet einige technische Indikatoren und Werkzeuge, um Signale und Ziele zu liefern. Die Komponenten der Strategie sind wie folgt: Ein stochastischer Oszillator mit 14 Perioden. Ein 5-Perioden-Stochastik-Oszillator. Ein gleitender 200-Perioden-Durchschnitt. Ein Werkzeug zur Fibonacci-Projektion (für die Festlegung von Zielen).

Kategorientheorie in MQL5 (Teil 10): Monoide Gruppen
Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier betrachten wir Monoidgruppen als Mittel zur Normalisierung von Monoidmengen, um sie über eine größere Bandbreite von Monoidmengen und Datentypen hinweg vergleichbar zu machen.

Automatisierter Raster-Handel mit Stop-Pending-Aufträge an der Moscow Exchange (MOEX)
Der Artikel befasst sich mit dem Ansatz des Raster-Handels (Grid-Trading), der auf Stop-Pending-Aufträge basiert und in einem MQL5 Expert Advisor an der Moscow Exchange (MOEX) implementiert wurde. Eine der einfachsten Strategien beim Handel am Markt ist eine Reihe von Aufträgen, die darauf abzielen, den Marktpreis zu „fangen“.

MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation
Die von Joseph Fourier eingeführte Fourier-Transformation ist ein Mittel zur Zerlegung komplexer Wellen aus Datenpunkten in einfache Teilwellen. Diese Funktion könnte für Händler sehr nützlich sein, und dieser Artikel wirft einen Blick darauf.

Erstellen eines EA, der automatisch funktioniert (Teil 14): Automatisierung (VI)
In diesem Artikel werden wir das gesamte Wissen aus dieser Serie in die Praxis umsetzen. Wir werden endlich ein 100%ig automatisiertes und funktionierendes System aufbauen. Aber vorher müssen wir noch ein letztes Detail klären.

Mehrschichtiges Perzeptron und Backpropagation-Algorithmus (Teil 3): Integration mit dem Strategy Tester - Überblick (I).
Das mehrschichtige Perzeptron ist eine Weiterentwicklung des einfachen Perzeptrons, das nichtlineare separierbare Probleme lösen kann. Zusammen mit dem Backpropagation-Algorithmus kann dieses neuronale Netz effektiv trainiert werden. In Teil 3 der Serie Multilayer Perceptron und Backpropagation werden wir sehen, wie man diese Technik in den Strategy Tester integriert. Diese Integration ermöglicht die Nutzung komplexer Datenanalysen, um bessere Entscheidungen zur Optimierung Ihrer Handelsstrategien zu treffen. In diesem Artikel werden wir die Vorteile und Probleme dieser Technik erörtern.

Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)
Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.

Kategorientheorie in MQL5 (Teil 7): Mehrere, relative und indizierte Domänen
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.

Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose
Der Artikel liefert ein Beispiel für die Verwendung eines Perzeptrons als autarkes Preisprognoseinstrument, indem er allgemeine Konzepte und den einfachsten vorgefertigten Expert Advisor vorstellt und anschließend die Ergebnisse seiner Optimierung zeigt.

Experimente mit neuronalen Netzen (Teil 5): Normalisierung der Eingaben zur Weitergabe an ein neuronales Netz
Neuronale Netze sind ein ultimatives Instrument im Werkzeugkasten der Händler. Prüfen wir, ob diese Annahme zutrifft. MetaTrader 5 ist als autarkes Medium für den Einsatz neuronaler Netze im Handel konzipiert. Dazu gibt es eine einfache Erklärung.

Multibot in MetaTrader: Starten mehrerer Roboter von einem einzigen Chart aus
In diesem Artikel werde ich eine einfache Vorlage für die Erstellung eines universellen MetaTrader-Roboters besprechen, der auf mehreren Charts verwendet werden kann, während er nur mit einem Chart läuft, ohne dass jede Instanz des Roboters auf jedem einzelnen Chart konfiguriert werden muss.

Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.

Wie man MQL5 verwendet, um Kerzenmuster zu erkennen
Ein neuer Artikel, um zu lernen, wie man Kerzenmuster der Preisen automatisch durch MQL5 erkennt.

Erstellen eines EA, der automatisch funktioniert (Teil 12): Automatisierung (IV)
Wenn Sie glauben, dass automatisierte Systeme einfach sind, dann haben Sie wahrscheinlich nicht ganz verstanden, was es braucht, um sie zu erstellen. In diesem Artikel werden wir über das Problem sprechen, das viele Expert Advisors umbringt. Das willkürliche Auslösen von schwebenden Aufträgen ist eine mögliche Lösung für dieses Problem.

Erstellen eines EA, der automatisch funktioniert (Teil 11): Automatisierung (III)
Ein automatisiertes System wird ohne angemessene Sicherheit nicht erfolgreich sein. Die Sicherheit wird jedoch nicht gewährleistet sein, wenn man bestimmte Dinge nicht richtig versteht. In diesem Artikel werden wir untersuchen, warum es so schwierig ist, ein Maximum an Sicherheit in automatisierten Systemen zu erreichen.

Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)
Automatisierung bedeutet nichts, wenn Sie den Zeitplan nicht kontrollieren können. Kein Arbeitnehmer kann effizient sein, wenn er 24 Stunden am Tag arbeitet. Viele sind jedoch der Meinung, dass ein automatisiertes System 24 Stunden am Tag funktionieren sollte. Aber es ist immer gut, eine Möglichkeit zu haben, einen Arbeitsbereich für den EA festzulegen. In diesem Artikel geht es darum, wie man einen solchen Zeitbereich richtig festlegt.

Erstellen eines EA, der automatisch funktioniert (Teil 09): Automatisierung (I)
Obwohl die Erstellung eines automatisierten EA keine sehr schwierige Aufgabe ist, können ohne die notwendigen Kenntnisse viele Fehler gemacht werden. In diesem Artikel werden wir uns ansehen, wie man die erste Stufe der Automatisierung aufbaut, die darin besteht, einen Auslöser zu erstellen, um den Breakeven und einen Trailing-Stop zu aktivieren.

Neuronale Netze leicht gemacht (Teil 36): Relationales Verstärkungslernen
In den Verstärkungslernmodellen, die wir im vorherigen Artikel besprochen haben, haben wir verschiedene Varianten von Faltungsnetzwerken verwendet, die in der Lage sind, verschiedene Objekte in den Originaldaten zu identifizieren. Der Hauptvorteil von Faltungsnetzen ist die Fähigkeit, Objekte unabhängig von ihrer Position zu erkennen. Gleichzeitig sind Faltungsnetzwerke nicht immer leistungsfähig, wenn es zu verschiedenen Verformungen von Objekten und Rauschen kommt. Dies sind die Probleme, die das relationale Modell lösen kann.

Experimente mit Neuronalen Netzen (Teil 4): Schablonen (Templates)
In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob Neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz Neuronaler Netze im Handel. Einfache Erklärung.

Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier
Wir untersuchen weiterhin Algorithmen für das verstärkte Lernen. Alle bisher betrachteten Algorithmen erfordern die Erstellung einer Belohnungspolitik, die es dem Agenten ermöglicht, jede seiner Aktionen bei jedem Übergang von einem Systemzustand in einen anderen zu bewerten. Dieser Ansatz ist jedoch ziemlich künstlich. In der Praxis gibt es eine gewisse Zeitspanne zwischen einer Handlung und einer Belohnung. In diesem Artikel werden wir einen Algorithmus zum Trainieren eines Modells kennenlernen, der mit verschiedenen Zeitverzögerungen zwischen Aktion und Belohnung arbeiten kann.