有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview

开发回放系统(第 36 部分):进行调整(二)

让我们的程序员生活举步维艰的原因之一就是做出假设。在本文中,我将向您展示假设是多么危险:例如在 MQL5 编程中假设类型将具有某个特定值,或是在 MetaTrader 5 中假设不同服务器的工作方式相同。
preview

开发回放系统(第 44 部分):Chart Trader 项目(三)

在上一篇文章中,我介绍了如何操作模板数据以便在 OBJ_CHART 中使用。在那篇文章中,我只是概述了这一主题,并没有深入探讨细节,因为在那个版本中,这项工作是以非常简单的方式完成的。这样做是为了更容易解释内容,因为尽管很多事情表面上很简单,但其中有些并不那么明显,如果不了解最简单、最基本的部分,就无法真正理解全局。
preview

大气云模型优化(ACMO):理论

本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
preview

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview

数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。
preview

用Python和MQL5进行投资组合优化

本文探讨了使用Python和MQL5结合MetaTrader 5进行高级投资组合优化的技术。文章展示了如何开发用于数据分析、资产配置和交易信号生成的算法,强调了在现代金融管理和风险缓解中数据驱动决策的重要性。
preview

《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》

循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
preview

您应当知道的 MQL5 向导技术(第 32 部分):正则化

正则化是一种在贯穿神经网络各层应用离散权重,按比例惩罚损失函数的形式。我们来考察其重要性,对于一些不同的正则化形式,能够在配合向导组装的智能系统运行测试。
preview

种群优化算法:模拟退火(SA)。第 1 部分

模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。
preview

S&P 500交易策略在MQL5中的实现(适合初学者)

了解如何利用MQL5精准预测标普500指数,结合经典技术分析以增强稳定性,并将算法与经过时间验证的原则相结合,以获得稳健的市场洞察。
preview

数据处理的分组方法:在MQL5中实现组合算法

在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。
preview
您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。
preview
您应当知道的 MQL5 向导技术(第 24 部分):移动平均

您应当知道的 MQL5 向导技术(第 24 部分):移动平均

移动平均是大多数交易者使用和理解的最常见指标。我们探讨一些在 MQL5 向导组装智能系统时可能不那么常见的可能用例。
preview
开发回放系统(第 49 部分):事情变得复杂 (一)

开发回放系统(第 49 部分):事情变得复杂 (一)

在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
preview
开发回放系统(第 46 部分):Chart Trade 项目(五)

开发回放系统(第 46 部分):Chart Trade 项目(五)

厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
preview
头脑风暴优化算法(第二部分): 多模态

头脑风暴优化算法(第二部分): 多模态

在文章的第二部分,我们将继续讨论BSO算法的实际应用,对测试函数进行测试,并将BSO的效率与其他优化方法进行比较。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
非平稳过程和伪回归

非平稳过程和伪回归

本文基于蒙特卡洛模拟,展示了回归分析非平稳过程时产生的伪回归现象。
preview
开发回放系统(第 58 部分):重返服务工作

开发回放系统(第 58 部分):重返服务工作

在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
preview
基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型

基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型

在本次讨论中,我们将把一个简单的马尔可夫链应用于相对强弱指标(RSI),以观察指标穿过关键水平后的价格行为。我们得出结论,当RSI处于11-20区间时,会产生最强的买入信号;而当RSI处于71-80区间时,会产生最强的卖出信号,这在新西兰元兑日元(NZDJPY)货币对上表现得尤为明显。我们将展示如何通过对数据的处理和分析,直接从您所拥有的数据中构建出最优的交易策略。此外,我们还将展示如何训练一个深度神经网络,使其能够最优地利用转移矩阵。
preview
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
preview
开发回放系统(第 38 部分):铺路(II)

开发回放系统(第 38 部分):铺路(II)

许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
preview
开发回放系统(第 43 部分):Chart Trade 项目(II)

开发回放系统(第 43 部分):Chart Trade 项目(II)

大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
动物迁徙优化(AMO)算法

动物迁徙优化(AMO)算法

本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。
preview
开发回放系统(第 52 部分):事情变得复杂(四)

开发回放系统(第 52 部分):事情变得复杂(四)

在本文中,我们将修改鼠标指针,以实现与控制指标的交互,确保可靠、稳定地运行。
preview
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
preview
随机数生成器质量对优化算法效率的影响

随机数生成器质量对优化算法效率的影响

在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
preview
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
preview
使用图表可视化交易(第一部分):选择分析时段

使用图表可视化交易(第一部分):选择分析时段

在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
基于人工生态系统的优化(AEO)算法

基于人工生态系统的优化(AEO)算法

本文探讨了一种元启发式算法——基于人工生态系统的优化(Artificial Ecosystem-based Optimization, AEO)算法。该算法通过生成初始解种群并应用自适应更新策略,模拟生态系统各组成部分之间的相互作用。文中详细阐述了AEO算法的运行阶段,包括消耗阶段与分解阶段,以及不同智能体的行为策略。文章还介绍了该算法的特点和优势。
preview
跨邻域搜索(ANS)

跨邻域搜索(ANS)

本文揭示了跨邻域搜索(ANS)算法的潜力,作为重要的一步,旨在开发灵活且智能的优化方法,使其能够在搜索空间中考虑问题的具体特性和环境的动态变化。
preview
使用MQL5中的动态时间规整进行模式识别

使用MQL5中的动态时间规整进行模式识别

在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。
preview
让新闻交易轻松上手(第五部分):执行交易(2)

让新闻交易轻松上手(第五部分):执行交易(2)

本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。
preview
开发回放系统(第 57 部分):了解测试服务

开发回放系统(第 57 部分):了解测试服务

需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
preview
开发回放系统(第 61 部分):玩转服务(二)

开发回放系统(第 61 部分):玩转服务(二)

在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。