
MQL5 中的矩阵和向量操作
MQL5 中引入了矩阵和向量,用于实现数学解决方案的高效操作。 新类型提供了内置方法,能够创建接近数学标记符号的简洁易懂的代码。 数组提供了广泛的功能,但在很多情况下,矩阵的效率要高得多。

连续前行优化 (第八部分): 程序改进和修复
根据本系列文章的用户和读者的评论和要求,程序已进行了修改。 本文包含一个自动优化器的新版本。 该版本实现了所需的功能,并提供了其他改进,这些是我运用该程序操作时发现的。

神经网络变得轻松(第二十六部分):强化学习
我们继续研究机器学习方法。 自本文,我们开始另一个大话题,强化学习。 这种方式允许为模型设置某些策略来解决问题。 我们可以预期,强化学习的这种特性将为构建交易策略开辟新的视野。

开发多币种 EA 交易(第 1 部分):多种交易策略的协作
交易策略是多种多样的,因此,或许可以采用几种策略并行运作,以分散风险,提高交易结果的稳定性。但是,如果每个策略都作为单独的 EA 交易来实现,那么在一个交易账户上管理它们的工作就会变得更加困难。为了解决这个问题,在一个 EA 中实现不同交易策略的操作是合理的。

在 MQL5 中使用 AutoIt
简述。 在本文中,我们将探索采用 MetraTrader 5 终端里以集成的 MQL5 编写 AutoIt 脚本。 在其中,我们将覆盖如何操纵终端的用户界面来自动完成各种任务,并介绍一个采用 AutoItX 库的类。


如何在 MetaTrader 5 中创建并测试自定义 MOEX(莫斯科证券交易所) 品种
本文介绍运用 MQL5 语言创建自定义兑换品种。 特别是,它研究使用来自流行的 Finam 网站的兑换报价。 本文中研究的另一个选项是在创建自定义品种时可以使用任意格式的文本文件。 这允许使用任何金融品种和数据源。 创建自定义品种之后,我们可以使用 MetaTrader 5 策略测试器的所有功能来测试兑换品种的交易算法。

神经网络变得轻松(第九部分):操作归档
我们已经经历了很长一段路,并且函数库中的代码越来越庞大。 这令跟踪所有连接和依赖性变得难以维护。 因此,我建议为先前创建的代码创建文档,并保持伴随每个新步骤进行更新。 正确准备的文档将有助我们看到操作的完整性。

从头开始开发智能交易系统(第 15 部分):访问 web 上的数据(I)
如何通过 MetaTrader 5 访问在线数据? 互联网上有很多网站,提供海量信息。 您需要知道的是,在哪里查找、以及如何才能最好地利用这些信息。

并行粒子群优化
本文介绍了一种基于粒子群算法的快速优化方法。本文还介绍了MQL中的方法实现,它既可以在EA交易内部的单线程模式下使用,也可以作为在本地测试人员代理上运行的附加组件在并行多线程模式下使用。

MQL5 酷宝书 — 宏观经济事件数据库
本文讨论了基于 SQLite 引擎处理数据库的可能性。 形成的 CDatabase 类就是为了方便和有效地运用 OOP 原则。 随后它会参与宏观经济事件数据库的创建和管理。 本文提供了使用 CDatabase 类的多种方法的示例。

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)
掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。

神经网络变得轻松(第二十四部分):改进迁移学习工具
在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)
多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器
我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。

MQL5集成:Python
Python是一种广为人知且流行的语言,具有许多功能,尤其是在金融、数据科学、人工智能和机器学习领域。Python也是一种强大的工具,可以在交易中发挥作用。MQL5允许我们将这种强大的语言作为集成工具,以高效地实现我们的目标。在本文中,我们将在了解一些Python的基本信息后,分享如何在MQL5中使用Python作为集成工具。

在 ONNX 模型中使用 float16 和 float8 格式
用于表示机器学习模型的数据格式对其有效性起着至关重要的作用。近年来,出现了几种新类型的数据,专门为使用深度学习模型而设计。在本文中,我们将重点介绍两种新的数据格式,它们已在现代模型中广泛采用。

利用 MQL5 的交互式 GUI 改进您的交易图表(第一部分):可移动 GUI(I)
凭借我们的利用 MQL5 创建可移动 GUI 的综合指南,令您的交易策略或实用程序焕发出呈现动态数据的力量。 深入了解图表事件的核心概念,并学习如何在同一图表上设计和实现简单、多个可移动的 GUI。 本文还探讨了往 GUI 上添加元素的过程,从而增强其功能和美观性。

Scikit-Learn 库中的分类模型及其导出到 ONNX
在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。

如何将 MetaTrader 5 与 PostgreSQL 连接
本文讲述了将 MQL5 代码与 Postgres 数据库连接的四种方法,并提供了一个分步教程,指导如何使用 Windows 子系统 Linux (WSL) 为 REST API 设置一个开发环境。 所提供 API 的演示应用程序,配以插入数据并查询相应数据表的 MQL5 代码,以及消化此数据的演示智能系统。

使用Python和MQL5开发机器人(第一部分):数据预处理
基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。

掌握ONNX:MQL5交易者的游戏规则改变者
深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏