Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Определить направление рынка может быть просто, но вот понять, когда входить на рынок, - гораздо более сложная задача. В этой статье серии "Разработка инструментария для анализа движения цен" я представлю еще один инструмент, который определяет точки входа и уровни стоп-лосса/тейк-профита. Для достижения этой цели использовался язык программирования MQL5.
preview
Разработка системы репликации (Часть 78): Новый Chart Trade (V)

Разработка системы репликации (Часть 78): Новый Chart Trade (V)

В данной статье мы рассмотрим, как нужно реализовывать часть кода получателя. Здесь мы реализуем версию советника, чтобы протестировать и узнать, как работает взаимодействие по протоколу. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.
preview
Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Создаем торговую систему с настоящим квантовым симулятором вместо математических аналогий. Система использует 3 виртуальных кубита, квантовые гейты и принципы суперпозиции для анализа рынков. Реализована как торговый советник для MetaTrader 5 на MQL5. Главное достижение — переход от имитации к реальным квантовым принципам обработки финансовой информации.
preview
Разработка советника для мониторинга точек входа в свинг-сделки

Разработка советника для мониторинга точек входа в свинг-сделки

Год близится к завершению, и в это время долгосрочные трейдеры часто подводят его итоги, анализируя историю рынка, его поведение и тренды с тем, чтобы оценить потенциал для будущих движений. В этой статье мы рассмотрим разработку советника для мониторинга долгосрочных сделок с помощью языка MQL5. Цель в том, чтобы справиться с такими проблемами, как упущение торговых возможностей по причине торговли вручную и отсутствия автоматизированных систем мониторинга. В качестве примера мы будем использовать одну из наиболее ярких торговых пар, чтобы эффективно определить стратегию для нашего решения и разработать его.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Продолжение темы оптимизации научным сообществом. CoSO следует рассматривать не как готовое решение, а как перспективную исследовательскую платформу. При должной доработке, CoSO может найти свою нишу в задачах, где важна адаптивность и устойчивость к изменениям, а время вычислений не критично.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Секреты эффективной оптимизации торговых стратегий в метаэвристических подходах. Community of Scientist Optimization — новый популяционный алгоритм, вдохновленный механизмами функционирования научного сообщества. В отличие от традиционных природных метафор, CoSO моделирует уникальные аспекты человеческой научной деятельности: публикацию результатов в журналах, конкуренцию за гранты и формирование исследовательских групп.
preview
Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

В статье представлена инновационная архитектура квантовой нейронной сети для алгоритмической торговли, объединяющая принципы квантовой механики с современными методами машинного обучения. Система включает квантовые эффекты (резонанс, интерференцию, декогеренцию), многоуровневую память различных временных масштабов, марковские цепи с библиотекой ALGLIB и адаптивное управление параметрами. Полная реализация выполнена на MQL5 с использованием встроенных типов matrix/vector, что устраняет барьеры внедрения в MetaTrader 5.
preview
Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Узнайте, как извлекать, обрабатывать, классифицировать, сортировать, анализировать и управлять закрытыми позициями, ордерами и историями сделок с помощью MQL5, создав обширную EX5-библиотеку управления историей с помощью подробного пошагового подхода.
preview
Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

В статье представлен алгоритм конкурентного обучения (Competitive Learning Algorithm, CLA) — новый метаэвристический метод оптимизации, основанный на моделировании образовательного процесса. Алгоритм организует популяцию решений в виде классов со студентами и учителями, где агенты обучаются через три механизма: следование за лучшим в классе, использование личного опыта и обмен знаниями между классами.
preview
Новый подход к пользовательским критериям при оптимизациях (Часть 1): Примеры функций активации

Новый подход к пользовательским критериям при оптимизациях (Часть 1): Примеры функций активации

Это первая из серии статей, посвященных математическим аспектам создания пользовательских критериев с особым акцентом на нелинейных функциях, применяемых в нейросетях, MQL5-коде для реализации, а также на использования целевых и корректирующих смещений.
preview
Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Мы выходим за рамки простого просмотра проанализированных показателей на графиках и переходим к более широкой перспективе, которая включает интеграцию с Telegram. Это позволит отправлять важные результаты непосредственно на мобильное устройство через Telegram.
preview
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.
preview
Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Переход от простого торгового скрипта к полнофункциональному советнику может значительно улучшить ваш торговый опыт. Представьте себе систему, которая автоматически отслеживает графики, выполняет основные вычисления в фоновом режиме и предоставляет регулярные обновления каждые два часа. Советник способен анализировать ключевые показатели, имеющие решающее значение для принятия обоснованных торговых решений, гарантируя вам доступ к самой актуальной информации для эффективной корректировки ваших стратегий.
preview
Пользовательские символы MQL5: Создаем символ 3D-баров

Пользовательские символы MQL5: Создаем символ 3D-баров

В данной статье представлено детальное руководство по созданию инновационного индикатора 3DBarCustomSymbol.mq5, который генерирует пользовательские символы в MetaTrader 5, объединяющие цену, время, объем и волатильность в единое трехмерное представление. Рассматриваются математические основы, архитектура системы, практические аспекты реализации и применения в торговых стратегиях.
preview
Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

ROC-кривые — графические представления, используемые для оценки эффективности классификаторов. Хотя графики ROC относительно просты, на практике при их использовании существуют распространенные заблуждения и подводные камни. Цель данной статьи — познакомить читателя с графиками ROC как инструментом для практикующих специалистов, стремящихся разобраться в оценке эффективности классификаторов.
preview
Экстремальная оптимизация — Extremal Optimization (EO)

Экстремальная оптимизация — Extremal Optimization (EO)

В данной статье рассматривается алгоритм Extremal Optimization (EO) — метод оптимизации, вдохновленный моделью самоорганизованной критичности Бака-Снеппена, где эволюция происходит через устранение наихудших компонентов системы. Модифицированная популяционная версия алгоритма демонстрирует отход от теоретических принципов в пользу практической эффективности, что приводит к созданию мощных вычислительных инструментов.
preview
Механизмы гейтинга в ансамблевом обучении

Механизмы гейтинга в ансамблевом обучении

В настоящей статье мы продолжаем наше исследование ансамблевых моделей, обсуждая концепцию ворот (gates), в частности, как они могут быть полезны при объединении выходных данных модели для повышения точности прогнозирования или обобщения модели.
preview
Тестирование надежности торговых советников

Тестирование надежности торговых советников

При разработке стратегии необходимо учитывать множество сложных деталей, на многие из которых не обращают особого внимания начинающие трейдеры. В результате многим трейдерам, включая меня, пришлось усвоить эти уроки на собственном горьком опыте. Данная статья основана на моих наблюдениях за распространенными подводными камнями, с которыми сталкивается большинство начинающих трейдеров при разработке стратегий на MQL5. В ней представлен ряд советов, хитростей и примеров, которые помогут определить причину дисквалификации советника и протестировать надежность наших собственных советников простым в применении способом. Цель состоит в том, чтобы обучить читателей, помогая им избежать мошенничества в будущем при покупке советников, а также предотвратить ошибки при разработке собственной стратегии.
preview
Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Долгая кратковременная память (LSTM) - это тип рекуррентной нейронной сети (RNN), предназначенной для моделирования последовательных данных путем эффективного учета долгосрочных зависимостей и решения проблемы исчезающего градиента. В настоящей статье мы рассмотрим, как использовать LSTM для прогнозирования будущих тенденций, повышая эффективность стратегий следования за трендами. В статье будет рассказано о внедрении ключевых концепций и стоящей за разработкой мотивации, извлечении данных из MetaTrader 5, использовании этих данных для обучения модели на Python, интеграции модели машинного обучения в MQL5, а также о результатах и перспективах на будущее на основании статистического бэк-тестирования.
preview
Ансамблевые методы для улучшения численного прогнозирования в MQL5

Ансамблевые методы для улучшения численного прогнозирования в MQL5

В этой статье мы представим реализацию нескольких методов ансамблевого обучения на языке MQL5 и исследуем их эффективность в различных сценариях.
preview
Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

В статье рассматривается оценка качества сезонного торгового подхода на дневном таймфрейме — как для отдельных символов, так и для спредов. Особое внимание уделяется выявлению повторяющихся месячных циклов и возможностям их применения в торговле в рамках текущего года.
preview
Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.
preview
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Проксимальная оптимизация политики (Proximal Policy Optimization) — еще один алгоритм обучения с подкреплением, который обновляет политику, часто в сетевой форме, очень маленькими шагами, чтобы обеспечить стабильность модели. Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Переосмысление индикаторов MQL5 и MetaTrader 5

Переосмысление индикаторов MQL5 и MetaTrader 5

Инновационный подход к сбору информации с индикаторов на MQL5 обеспечивает более гибкий и оптимизированный анализ данных, позволяя разработчикам вводить пользовательские данные в индикаторы для осуществления немедленных расчетов. Этот подход особенно полезен для алгоритмической торговли, поскольку он обеспечивает повышенный контроль над информацией, обрабатываемой индикаторами, выходя за рамки традиционных ограничений.
preview
Исследуем регрессионные модели для причинно-следственного вывода и трейдинга

Исследуем регрессионные модели для причинно-следственного вывода и трейдинга

В данной статье проведено исследование на тему возможности применения регрессионных моделей в алгоритмической торговле. Регрессионные модели, в отличие от бинарной классификации, дают возможность создавать более гибкие торговые стратегии за счет количественной оценки прогнозируемых ценовых изменений.
preview
Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python

Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python

В настоящей статье мы обсудим реализацию MQL5 в партнерстве с Python для выполнения связанных с брокером операций. Представьте, что у вас есть постоянно работающий советник (EA), размещенный на VPS и совершающий сделки от вашего имени. В какой-то момент способность советника управлять средствами становится первостепенной. Она включает в себя такие операции, как пополнение вашего торгового счета и инициирование вывода средств. В данном обсуждении мы прольем свет на преимущества и практическую реализацию этих функций, обеспечивающих плавную интеграцию управления средствами в вашу торговую стратегию. Следите за обновлениями!
preview
Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Статья посвящена подробному анализу алгоритма Exchange Market Algorithm (EMA), который вдохновлен поведением трейдеров на фондовом рынке. Алгоритм моделирует процесс торговли акциями, где участники рынка с разным уровнем успеха применяют различные стратегии для максимизации прибыли.
preview
Разработка инструментария для анализа движения цен (Часть 2): Скрипт аналитических комментариев

Разработка инструментария для анализа движения цен (Часть 2): Скрипт аналитических комментариев

В продолжение нашей работы по упрощению взаимодействия с поведением цены мы рады представить еще один инструмент, который может значительно улучшить ваш анализ рынка и помочь вам принимать обоснованные решения. Этот инструмент отображает ключевые технические индикаторы, такие как цены предыдущего дня, значимые уровни поддержки и сопротивления, а также торговый объем, автоматически генерируя визуальные подсказки на графике.
preview
Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

CatBoost – это эффективная модель машинного обучения на основе деревьев, которая специализируется на принятии решений на основе статических признаков. Другие модели на основе деревьев, такие как XGBoost и Random Forest, обладают схожими характеристиками в плане надежности, интерпретируемости и способности работать со сложными паттернами. Эти модели имеют широкий спектр применения: от анализа признаков до управления рисками. В данной статье мы пройдемся по процедуре использования обученной модели CatBoost в качестве фильтра для классической трендовой стратегии на основе пересечения скользящих средних.
preview
Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Анализ временных разрывов цен в MQL5 (Часть II): Создаем тепловую карту распределения ликвидности во времени

Подробное руководство по созданию индикатора тепловой карты для MetaTrader 5, который визуализирует временное распределение цены в виде тепловой карты. Статья раскрывает математическую основу анализа временной плотности, где каждый ценовой уровень окрашивается от красного (минимальное время пребывания) до синего (максимальное время пребывания).
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Temporal Difference (TD, временные различия) — еще один алгоритм обучения с подкреплением, который обновляет Q-значения на основе разницы между прогнозируемыми и фактическими вознаграждениями во время обучения агента. Особое внимание уделяется обновлению Q-значений без учета их пар "состояние-действие" (state-action). Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Индикатор сезонности по часам, дням недели и месяца

Индикатор сезонности по часам, дням недели и месяца

Статья объясняет, как разработать инструмент для анализа повторяющихся ценовых закономерностей на финансовых рынках — по дням месяца (1-31), дням недели (понедельник-воскресенье) или часам дня (0-23). Индикатор анализирует исторические данные, вычисляет среднюю доходность для каждого периода и отображает результаты в виде гистограммы с прогнозом. Включает настраиваемые параметры: тип сезонности, количество анализируемых баров, отображение в процентах или абсолютных значениях, цвета графиков.
preview
Алгоритм обратного поиска — Backtracking Search Algorithm (BSA)

Алгоритм обратного поиска — Backtracking Search Algorithm (BSA)

Что если алгоритм оптимизации мог бы помнить свои прошлые путешествия и использовать эту память для поиска лучших решений? BSA делает именно это — балансируя между исследованием нового и возвращением к проверенному. В статье раскрываем секреты алгоритма. Простая идея, минимум параметров и стабильный результат.
preview
Модель портфельного риска с использованием критерия Келли и моделирования по методу Монте-Карло

Модель портфельного риска с использованием критерия Келли и моделирования по методу Монте-Карло

На протяжении десятилетий трейдеры использовали формулу критерия Келли для определения оптимальной доли капитала, которую можно направить на инвестиции или ставки, чтобы максимизировать долгосрочный рост при минимизации риска разорения. Однако слепое следование критерию Келли, основанному на результатах единственного бэк-тестирования, часто опасно для отдельных трейдеров, поскольку при реальной торговле торговое преимущество со временем тает, а прошлые результаты не являются предиктором будущих результатов. В настоящей статье я представлю реалистичный подход к применению критерия Келли для распределения рисков одного или нескольких советников в MetaTrader 5, основанный на результатах моделирования методом Монте-Карло с помощью Python.
preview
Анализ временных разрывов цен в MQL5 (Часть I): Создаем базовый индикатор

Анализ временных разрывов цен в MQL5 (Часть I): Создаем базовый индикатор

Анализ временных разрывов (таймгэпов) помогает трейдеру выявлять потенциальные точки разворота рынка. В статье рассматривается, что такое таймгэп, как его интерпретировать, а также каким образом с его помощью можно обнаружить вливание крупного объема в рынок.
preview
Алгоритм эхолокации дельфинов — Dolphin Echolocation Algorithm (DEA)

Алгоритм эхолокации дельфинов — Dolphin Echolocation Algorithm (DEA)

В этой статье мы подробно рассмотрим алгоритм DEA — метаэвристический метод оптимизации, вдохновленный уникальной способностью дельфинов находить добычу с помощью эхолокации. От математических основ до практической реализации на MQL5, от анализа до сравнения с классическими алгоритмами — детально разберем, почему этот относительно молодой метод заслуживает места в арсенале тех, кто сталкивается с задачами оптимизации.
preview
Эволюционная стратегия адаптации ковариационной матрицы — Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Эволюционная стратегия адаптации ковариационной матрицы — Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Исследуем один из самых интересных алгоритмов без градиентной оптимизации, который учится понимать геометрию целевой функции. Рассмотрим классическую реализацию CMA-ES с небольшой модификацией — заменой нормального распределения на степенное. Детальный разбор математики алгоритма, практическая реализация и честный анализ: где CMA-ES непобедим, а где его лучше не применять.
preview
Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Алгоритмическая торговая система, сочетающая анализ объема с методами машинного обучения, в частности с нейронными сетями LSTM. В отличие от традиционных торговых подходов, которые в первую очередь фокусируются на движении цен, эта система делает упор на паттернах объема и их производных для прогнозирования движений рынка. Методология включает в себя три основных компонента: анализ производных от объема (первые и вторые производные), прогнозы LSTM для паттернов объема и традиционные технические индикаторы.
preview
Взаимная информация как критерий для поэтапного отбора признаков

Взаимная информация как критерий для поэтапного отбора признаков

В настоящей статье мы представляем реализацию поэтапного отбора признаков на MQL5, основанную на взаимной информации между оптимальным набором предикторов и целевой переменной.