Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Разработка системы репликации (Часть 74): Новый Chart Trade (I)

Разработка системы репликации (Часть 74): Новый Chart Trade (I)

В этой статье мы изменим последний код, показанный в данной серии о Chart Trade. Эти изменения необходимы, чтобы адаптировать код к текущей модели системы репликации/моделирования. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.
preview
Разработка инструментария для анализа движения цен (Часть 1): Проектор графиков

Разработка инструментария для анализа движения цен (Часть 1): Проектор графиков

Настоящий проект направлен на использование алгоритма MQL5 для разработки комплексного набора инструментов анализа для MetaTrader 5. Эти инструменты — от скриптов и индикаторов до моделей искусственного интеллекта и советников — позволят автоматизировать процесс анализа рынка. Иногда такая разработка позволяет создавать инструменты, способные выполнять углубленный анализ без участия человека и прогнозировать результаты на соответствующих платформах. Ни одна возможность не будет упущена. Присоединяйтесь ко мне в рамках исследования процесса создания надежного набора пользовательских инструментов для анализа рынка. Начнем с разработки простой программы на MQL5, которую я назвал Chart Projector (Проектор графиков).
preview
Отбор признаков и снижение размерности с помощью анализа главных компонент (PCA)

Отбор признаков и снижение размерности с помощью анализа главных компонент (PCA)

В статье рассматривается реализация модифицированного алгоритма анализа компонентов прямого отбора, вдохновленного исследованиями, представленными в книге Луки Пуггини (Luca Puggini) и Шона Маклуна (Sean McLoone) “Анализ компонентов прямого отбора: алгоритмы и приложения”.
preview
Майнинг данных CFTC на Python и ИИ модель на их основе

Майнинг данных CFTC на Python и ИИ модель на их основе

Попробуем смайнить даные CFTC, загрузить отчеты COT и TFF через Python, соединить это с котировками MetaTrader 5 и моделью ИИ и получить прогнозы. Что такое отчеты COT на рынке Форекс? Как использовать отчеты COT и TFF для прогнозирования?
preview
Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков позволяет получить картину мировой ликвидности рынка Форекс и ключевых валют. Мы объединяем данные ФРС, ЕЦБ, BOJ и PBoC в композитный индекс и применяем машинное обучение для выявления скрытых закономерностей. Такой подход превращает сырой поток данных в реальные торговые сигналы, соединяя фундаментальный и технический анализ.
preview
Изучаем конформное прогнозирование финансовых временных рядов

Изучаем конформное прогнозирование финансовых временных рядов

В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 44): Технический индикатор Average True Range (ATR)

Возможности Мастера MQL5, которые вам нужно знать (Часть 44): Технический индикатор Average True Range (ATR)

Осциллятор ATR — очень популярный индикатор, используемый в качестве индикатора волатильности, особенно на валютных рынках, где данные об объемах скудны. Как и в случае с предыдущими индикаторами, мы рассмотрим паттерны и поделимся стратегиями и отчетами о тестировании.
preview
Индикатор CAPM модели на рынке Forex

Индикатор CAPM модели на рынке Forex

Адаптация классической модели CAPM для валютного рынка Forex в MQL5. Индикатор рассчитывает ожидаемую доходность и премию за риск на основе исторической волатильности. Показатели возрастают на пиках и впадинах, отражая фундаментальные принципы ценообразования. Практическое применение для контртрендовых и трендовых стратегий с учетом динамики соотношения риска и доходности в реальном времени. Включает математический аппарат и техническую реализацию.
preview
Индикатор прогнозирования ARIMA на MQL5

Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.
preview
Машинное обучение и Data Science (Часть 31): Применение моделей CatBoost в трейдинге

Машинное обучение и Data Science (Часть 31): Применение моделей CatBoost в трейдинге

Модели искусственного интеллекта CatBoost приобрели огромную популярность в сообществе машинного обучения благодаря их точности прогнозирования, эффективности и устойчивости к разрозненным и сложным наборам данных. В этой статье речь будет идти о том, как использовать эти модели применительно к рынку Форекс.
preview
Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Алгоритм Deterministic Oscillatory Search (DOS) — инновационный метод глобальной оптимизации, сочетающий преимущества градиентных и роевых алгоритмов без использования случайных чисел. Механизм осцилляций и наклонов фитнеса позволяет DOS исследовать сложные пространства поиска детерминированным методом.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

SARSA (State-Action-Reward-State-Action, состояние-действие-вознаграждение-состояние-действие) — еще один алгоритм, который можно использовать при реализации обучения с подкреплением. Рассмотрим, как можно реализовать этот алгоритм в качестве независимой модели (а не просто механизма обучения) в советниках, собранных в Мастере, аналогично тому, как мы это делали в случаях с Q-обучением и DQN.
preview
Ординальное кодирование номинальных переменных

Ординальное кодирование номинальных переменных

В настоящей статье мы обсудим и продемонстрируем, как преобразовать номинальные предикторы в числовые форматы, подходящие для алгоритмов машинного обучения, используя как Python, так и MQL5.
preview
Упрощаем торговлю на новостях (Часть 4): Повышаем производительность

Упрощаем торговлю на новостях (Часть 4): Повышаем производительность

В этой статье будут рассмотрены методы улучшения работы советника в тестере стратегий, будет написан код для разделения времени новостных событий на почасовые категории. Доступ к этим новостным событиям будет осуществляться в течение указанного для них часа. Это гарантирует, что советник может эффективно управлять сделками на основе событий как в условиях высокой, так и низкой волатильности.
preview
Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?
preview
Фильтр Калмана для возвратных стратегий на рынке Форекс

Фильтр Калмана для возвратных стратегий на рынке Форекс

Фильтр Калмана представляет собой рекурсивный алгоритм, применяемый в алготрейдинге для оценки истинного состояния финансового временного ряда посредством фильтрации шума из движения цен. Он динамически обновляет прогнозы на основе новых рыночных данных, что делает его ценным для таких адаптивных стратегий, как возвратные. В этой статье впервые представлен фильтр Калмана, а также рассмотрены его расчет и реализация. Кроме того, в качестве примера мы применим этот фильтр к классической возвратной форекс-стратегии. Наконец, проведем различные виды статистического анализа, сравнивая фильтр со скользящей средней на различных валютных парах.
preview
Матричная модель прогнозирования на марковской цепи

Матричная модель прогнозирования на марковской цепи

Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных

Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных

В этой статье мы рассмотрим расширенную визуализацию данных, включая такие функции, как интерактивность, многослойные данные и динамические элементы, позволяющие трейдерам более эффективно изучать тренды, закономерности и корреляции.
preview
Движение цены: Математические модели и технический анализ

Движение цены: Математические модели и технический анализ

Прогнозирование движений валютных пар является важным фактором успеха в трейдинге. Данная статья посвящена исследованию различных моделей движения цены, анализу их преимуществ и недостатков, а также практическому применению в торговых стратегиях. Мы рассмотрим подходы, позволяющие выявлять скрытые закономерности и повышать точность прогнозов.
preview
От новичка до эксперта: Совместная отладка на MQL5

От новичка до эксперта: Совместная отладка на MQL5

Политика «решения проблем» может создать четкую программу для овладения сложными навыками, такими как программирование на MQL5. Такой подход позволяет сконцентрироваться на решении проблем, одновременно развивая свои навыки. Чем больше проблем вы решаете, тем более продвинутый опыт передается в ваш мозг. Лично я считаю, что отладка - это самый эффективный способ освоить программирование. Сегодня мы рассмотрим процесс очистки кода и обсудим лучшие методы преобразования запутанной программы в ясную и функциональную. Прочтите эту статью и откройте для себя ценную информацию.
preview
Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.
preview
Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда, разработанный в 2016 году, моделирует поведение верблюдов в пустыне для решения оптимизационных задач, учитывая факторы температуры, запасов и выносливости. В данной работе представлена еще его модифицированная версия (CAm) с ключевыми улучшениями: применение гауссова распределения при генерации решений и оптимизация параметров эффекта оазиса.
preview
Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка

Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка

В этой статье мы рассмотрим динамическую интеграцию сверточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) для задач прогнозирования фондового рынка. Для этого соединим способность CNN извлекать закономерности и эффективность RNN в обработке последовательных данных. Давайте посмотрим, как такая мощная комбинация может повысить точность и эффективность торговых алгоритмов.
preview
Критерий независимости Гильберта-Шмидта (HSIC)

Критерий независимости Гильберта-Шмидта (HSIC)

В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.
preview
Количественный анализ трендов: Собираем статистику на Python

Количественный анализ трендов: Собираем статистику на Python

Что такое количественный анализ трендов на рынке Форекс. Собираем статистику по трендам, их величине и распределению по валютной паре EURUSD. Как количественный анализ трендов поможет создать прибыльный торговый советник.
preview
Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели

Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели

Мы применим простую цепь Маркова к индикатору RSI, чтобы наблюдать за поведением цены после того, как индикатор проходит через ключевые уровни. Мы пришли к выводу, что самые сильные сигналы на покупку и продажу по паре NZDJPY генерируются, когда RSI находится в диапазоне 11–20 и 71–80 соответственно. Мы покажем, как можно манипулировать данными, чтобы создавать оптимальные торговые стратегии, основанные непосредственно на имеющихся данных. Кроме того, мы продемонстрируем, как обучить глубокую нейронную сеть оптимальному использованию матрицы перехода.
preview
Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели (СММ) представляют собой мощный класс вероятностных моделей, предназначенных для анализа последовательных данных, где наблюдаемые события зависят от некоторой последовательности ненаблюдаемых (скрытых) состояний, которые формируют марковский процесс. Основные предположения СММ включают марковское свойство для скрытых состояний, означающее, что вероятность перехода в следующее состояние зависит только от текущего состояния, и независимость наблюдений при условии знания текущего скрытого состояния.
preview
Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)

Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)

Новый метаэвристический метод, основанный на фрактальном подходе к разделению пространства поиска для решения задач оптимизации. Алгоритм последовательно идентифицирует и разделяет перспективные области, создавая самоподобную фрактальную структуру, которая концентрирует вычислительные ресурсы на наиболее перспективных участках. Уникальный механизм мутации, направленный в сторону лучших решений, обеспечивает оптимальный баланс между исследованием и использованием пространства поиска, значительно повышая эффективность алгоритма.
preview
Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Статья содержит детальное описание алгоритма расчета кросс-курсов, визуализацию матрицы дисбалансов и рекомендации по оптимальной настройке параметров MinDiscrepancy и MaxRisk для эффективной торговли. Система автоматически рассчитывает "справедливую стоимость" каждой валютной пары через кросс-курсы, генерируя сигналы на покупку при отрицательных отклонениях, и на продажу — при положительных.
preview
Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Система прогнозирования EURUSD с применением компьютерного зрения и глубокого обучения. Узнайте, как сверточные нейронные сети могут распознавать сложные ценовые паттерны на валютном рынке и предсказывать движение курса с точностью до 54%. Статья раскрывает методологию создания алгоритма, использующего технологии искусственного интеллекта для визуального анализа графиков вместо традиционных технических индикаторов. Автор демонстрирует процесс трансформации ценовых данных в «изображения», их обработку нейронной сетью и уникальную возможность заглянуть в «сознание» ИИ через карты активации и тепловые карты внимания. Практический код на Python с использованием библиотеки MetaTrader 5 позволяет читателям воспроизвести систему и применить ее в собственной торговле.
preview
Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Продолжение исследования алгоритма хаотической оптимизации. Вторая часть статьи посвящена практическим аспектам реализации алгоритма, его тестированию и выводам.
preview
Прогнозируем Ренко — бары при помощи ИИ CatBoost

Прогнозируем Ренко — бары при помощи ИИ CatBoost

Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.
preview
Алгоритм хаотической оптимизации  — Chaos optimization algorithm (COA)

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA)

Усовершенствованный алгоритм хаотической оптимизации (COA), объединяющий воздействие хаоса с адаптивными механизмами поиска. Алгоритм использует множество хаотических отображений и инерционные компоненты для исследования пространства поиска. Статья раскрывает теоретические основы хаотических методов финансовой оптимизации.
preview
Создание самооптимизирующихся советников на языках MQL5 и Python (Часть II): Настройка глубоких нейронных сетей

Создание самооптимизирующихся советников на языках MQL5 и Python (Часть II): Настройка глубоких нейронных сетей

Модели машинного обучения имеют различные настраиваемые параметры. В этой серии статей мы рассмотрим, как настроить ИИ-модели в соответствии с конкретным рынком с помощью библиотеки SciPy.
preview
Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.
preview
Одномерный сингулярный спектральный анализ

Одномерный сингулярный спектральный анализ

Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.
preview
Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков

Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков

Что такое угловой анализ финансовых рынков? Как использовать углы движения цен и машинное обучение для точного прогнозирования с точностью 67? Как совместить регрессионную и классификационную модель с угловыми признаками и получить работающий алгоритм? Причем тут Ганн? Почему углы движения цен являются хорошим признаком для машинного обучения?
preview
Оптимизация коралловых рифов — Coral Reefs Optimization (CRO)

Оптимизация коралловых рифов — Coral Reefs Optimization (CRO)

В данной статье представлен комплексный анализ алгоритма оптимизации коралловых рифов (CRO) — метаэвристического метода, вдохновленного биологическими процессами формирования и развития коралловых рифов. Алгоритм моделирует ключевые аспекты эволюции кораллов: внешнее и внутреннее размножение, оседание личинок, бесполое размножение и конкуренцию за ограниченное пространство в рифе. Особое внимание в работе уделяется усовершенствованной версии алгоритма.
preview
Торговля по алгоритму: ИИ и его путь к золотым вершинам

Торговля по алгоритму: ИИ и его путь к золотым вершинам

В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.
preview
Определение перекупленности и перепроданности по теории хаоса

Определение перекупленности и перепроданности по теории хаоса

Определяем перекупленность и перепроданность рынка по теории хаоса: интеграция принципов теории хаоса, фрактальной геометрии и нейронных сетей для прогнозирования финансовых рынков. Исследование демонстрирует применение показателя Ляпунова, как меры рыночной хаотичности, и динамическую адаптацию торговых сигналов. Методология включает алгоритм генерации фрактального шума, гиперболическую тангенциальную активацию и оптимизацию с моментом.