
Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)
Наконец-то визуальная система заработает... хотя пока не до конца. Здесь мы закончим вносить основные изменения, которых будет не мало, но они все необходимы, и вся работа будет достаточно интересной.

Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)
Каждый раз, при рассмотрении методов обучения с подкреплением, мы сталкиваемся с вопросом эффективного исследования окружающей среды. Решение данного вопроса часто приводит к усложнению алгоритма и обучению дополнительных моделей. В данной статье мы рассмотрим альтернативный подход к решению данной проблемы.

Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний
В разрабатываемом советнике у нас уже заложен определённый механизм контроля просадки. Но он имеет вероятностную природу, так как основывается на результатах тестирования на исторических ценовых данных. Поэтому просадка, хотя и с небольшой вероятностью, может иногда превышать максимальные ожидаемые значения. Попробуем добавить механизм, обеспечивающий гарантированное соблюдение заданного уровня просадки.

Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)
Последние 2 статьи были посвящены методу Decision Transformer, который моделирует последовательности действий в контексте авторегрессионной модели желаемых вознаграждений. В данной статье мы рассмотрим ещё один алгоритм оптимизации данного метода.

Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения
Прокрастинация модели в контексте обучения с подкреплением может быть вызвана несколькими причинами, и решение этой проблемы требует принятия соответствующих мер. В статье рассмотрены некоторые из возможных причин прокрастинации модели и методы их преодоления.

Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)
Несмотря на то, что многие люди не умеют программировать, они достаточно креативны и имеют отличные идеи, но отсутствие знаний или понимания программирования мешает им сделать некоторые вещи. Давайте посмотрим вместе, как создать Chart Trade, но используя саму платформу MT5, как будто это IDE.

Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)
Мы продолжаем рассмотрение алгоритмов обучения с подкреплением в решении задач непрерывного пространства действий. И в данной статье предлагаю познакомиться с алгоритмом Soft Аctor-Critic (SAC). Основное преимущество SAC заключается в способности находить оптимальные политики, которые не только максимизируют ожидаемую награду, но и имеют максимальную энтропию (разнообразие) действий.

Нейросети в трейдинге: Практические результаты метода TEMPO
Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.

Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова
Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.

Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)
В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5
Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.

Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий
Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.

Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики
В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.

Функции в MQL5-приложениях
Функции являются критически важными компонентами в любом языке программирования. Помимо прочего, они помогают разработчикам применять принцип DRY (don't repeat youself, не повторяйся). В статье рассмотрены функции и их создание в MQL5 с помощью простых приложений, которые обогащают вашу торговую систему, но не усложняют ее.

Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)
Предлагаемый Вашему вниманию алгоритм Conformer был разработан для целей прогнозирования погоды, которую по изменчивости и капризности можно сравнить с финансовыми рынками. Conformer является комплексным методом. И сочетает в себе преимущества моделей внимания и обычных дифференциальных уравнений.

Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных
В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.

MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram
В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.

Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением
В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.

Прогнозирование с помощью моделей ARIMA в MQL5
В этой статье мы продолжаем разработку класса CArima для построения моделей ARIMA, добавляя интуитивно понятные методы прогнозирования.

Оптимизация и тестирование торговых стратегий (Часть 1): Взгляд на "Red Dragon H4", "BOLT", "YinYang", и "Statistics SAR"
Так как я постоянно занимаюсь, разработкой разного рода торговых систем сегодня хочу поделиться с Вами несколькими из них по стратегиям "Red Dragon H4", "BOLT", "YinYang" и "Statistics SAR". Данные стратегии были найдены на просторах интернета.

Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть I): Перемещаемый интерфейс (I)
Раскройте всю мощь динамического представления данных в своих торговых стратегиях или утилитах с помощью нашего подробного руководства по разработке перемещаемого графического интерфейса в MQL5. Погрузитесь в события графика и узнайте, как спроектировать и реализовать простой и множественный перемещаемый графический интерфейс на одном графике. В статье также рассматриваются добавление элементов в графический интерфейс, повышение их функциональности и эстетической привлекательности.

Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть III): Простой перемещаемый торговый интерфейс
В этой серии статей мы исследуем интеграцию интерактивных графических интерфейсов в перемещаемые торговые панели на MQL5. В третьей части мы используем наработки из предыдущих частей, чтобы превратить статические торговые панели в динамические.

Возможности Мастера MQL5, которые вам нужно знать (Часть 02): Карты Кохонена
Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.

Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры
Мы уже несколько продвинулись в разработке мультивалютного советника с несколькими параллельно работающими стратегиями. С учетом накопленного опыта проведем ревизию архитектуры нашего решения и попробуем ее улучшить, пока не ушли слишком далеко вперед.

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.

Нейросети — это просто (Часть 77): Кросс-ковариационный Трансформер (XCiT)
В своих моделях мы часто используем различные алгоритмы внимание. И, наверное, чаще всего мы используем Трансформеры. Основным их недостатком является требование к ресурсам. В данной статье я хочу предложить Вам познакомиться с алгоритмом, который поможет снизить затраты на вычисления без потери качества.

Несколько индикаторов на графике (Часть 04): Начинаем работу с советником
В предыдущих статьях я рассказывал, как создать индикатор с несколькими подокнами — такая возможность становится интересной при использовании пользовательских индикаторов. В этот раз мы рассмотрим, как добавить несколько окон в советник.

Несколько индикаторов на графике (Часть 06): Превращаем MetaTrader 5 в систему RAD (II)
В предыдущей статье я показал, как создать Chart Trade с использованием объектов MetaTrader 5 и превратить платформу в систему RAD. Система работает очень хорошо, и наверняка многие задумывались о создании библиотеки — она позволит иметь всё больше и больше функциональности в предлагаемой системе, и можно будет разработать более интуитивно понятный советник с более приятный и простым в использовании интерфейсом.

Нейросети — это просто (Часть 43): Освоение навыков без функции вознаграждения
Проблема обучения с подкреплением заключается в необходимости определения функции вознаграждения, которая может быть сложной или затруднительной для формализации, и для решения этой проблемы исследуются подходы, основанные на разнообразии действий и исследовании окружения, которые позволяют обучаться навыкам без явной функции вознаграждения.

Разработка торгового советника с нуля (Часть 19): Новая система ордеров (II)
В данной статье мы будем разрабатывать графическую систему ордеров вида «посмотрите, что происходит». Следует сказать, что мы не начнем с нуля, а модифицируем существующую систему, добавив еще больше объектов и событий на график торгуемого нами актива.

Разработка торгового советника с нуля (Часть 9): Концептуальный скачок (II)
Размещение Chart Trade в плавающем окне. В предыдущей статье мы создали базовую систему для использования шаблонов внутри плавающего окна.

Машинное обучение и Data Science (Часть 14): Применение карт Кохонена на рынках
Хотите найти новый подход в торговле, который поможет ориентироваться на сложных и постоянно меняющихся рынках? Взгляните на карты Кохонена — инновационную форму искусственных нейронных сетей, которая поможет выявить скрытые закономерности и тренды в рыночных данных. В этой статье мы рассмотрим, как работают карты Кохонена и как их использовать для разработки эффективных торговых стратегий. Думаю, этот новый подход будет интересен как опытным трейдерам, так и начинающим.

Нейросети в трейдинге: Анализ облака точек (PointNet)
Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.

Разработка торговой системы на основе индикатора OBV
Это новая статья, продолжающая нашу серию для начинающих MQL5-программистов, в которой мы учимся строить торговые системы с использованием самых популярных индикаторов. На этот раз мы будем изучать индикатор балансового объема On Balance Volume (OBV) — узнаем, как его использовать и как создать торговую систему на его основе.

Возможности Мастера MQL5, которые вам нужно знать (Часть 3): Энтропия Шеннона
Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера.

Нейросети — это просто (Часть 80): Генеративно-состязательная модель Трансформера графов (GTGAN)
В данной статье я предлагаю Вам познакомиться с алгоритмом GTGAN, который был представлен в январе 2024 года для решения сложных задач по созданию архитектурного макета с ограничениями на граф.

Разработка и тестирование торговых систем на основе Канала Кельтнера
В этой статье мы рассмотрим торговые системы, использующие очень важную концепцию финансового рынка — волатильность. Мы изучим торговую систему, основанную на канала Кельтнера (Keltner Channel), включая ее реализацию в коде и тестирование на различных активах.

Разметка данных в анализе временных рядов (Часть 3):Пример использования разметки данных
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!

Разработка торгового советника с нуля (Часть 11): Система кросс-ордеров
Создание системы кросс-ордеров. Есть один вид активов, который очень усложняет жизнь трейдерам — это активы фьючерсных контрактов. Но почему они усложняют жизнь трейдеру?

Как построить советник, работающий автоматически (Часть 15): Автоматизация (VII)
Чтобы завершить этот цикл статей об автоматизации, мы дополним то, что рассмотрели в предыдущей статье. Это определенно показывает, как всё будет сочетаться друг с другом, заставляя советника работать как часы.