
Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho
Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma documentação para o código criado anteriormente e mantê-lo atualizado a cada nova etapa. A documentação devidamente preparada nos ajudará a ver a integridade do nosso trabalho.

Busca de padrões sazonais no mercado de Forex usando o algoritmo CatBoost
O artigo considera a criação de modelos de aprendizado de máquina com filtros de tempo e discute a eficácia dessa abordagem. O fator humano pode ser eliminado agora simplesmente instruindo o modelo a negociar em uma determinada hora de um determinado dia da semana. A busca de padrões pode ser fornecida por um algoritmo separado.


Eliminação de DLLs autogeradas
Se a linguagem MQL5 funcional não é suficiente para o cumprimento de tarefas, um programador MQL5 tem que usar ferramentas adicionais. Ele \ ela tem que passar para outra linguagem de programação e criar uma DLL intermediária. O MQL5 tenha a possibilidade de apresentar vários tipos de dados e transferí-los à API mas, infelizmente o MQL5 não pode resolver a questão levando em consideração a extração de dados do ponteiro aceito. Neste artigo vamos pontuar todos os "i"s e mostrar mecanismos simples de transferência e trabalho tipos complexos de dados.


Conexão do Expert Advisor com ICQ no MQL5
Este artigo descreve o método de troca de informação entre o Expert Advisor e os usuários do ICQ, são apresentados vários exemplos. O material fornecido será interessante para aqueles que queiram receber informações de negócio remotamente de um terminal de cliente através de um cliente ICQ em seus celulares ou PDA.


Expert Advisor MetaTrader 4 para Intercâmbio de Informações com o Mundo Exterior
Uma solução simples, universal e confiável de intercâmbio de informações entre um Expert Advisor МetaТrader 4 e o mundo exterior. Fornecedores e consumidores de informações podem estar localizados em diferentes computadores, a conexão é realizada através dos endereços IPs globais.

Reamostragem avançada e seleção de modelos CatBoost pelo método de força bruta
Este artigo descreve uma das possíveis abordagens para a transformação de dados com o objetivo de melhorar a generalização do modelo, ele também discute a amostragem e seleção dos modelos CatBoost.

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 02): Primeiros experimentos (II)
Vamos experimentar uma outra abordagem, desta vez tentando alcançar o objetivo de 1 minuto. Mas isto não é uma tarefa tão simples, como muitos pensam.

Letreiro de Cotação — Versão Básica
Aqui irei mostrar como criar aquelas faixas, normalmente usadas para mostrar cotações no caso das plataformas, mas usando pura e simplesmente MQL5, nada de programação externa complicada ou cheia de frescura.

Usando o AutoIt com MQL5
Este artigo descreve como criar scripts para o terminal MetraTrader 5, integrando MQL5 com AutoIt. Vou mostrar como automatizar várias tarefas usando a interface do usuário do terminal e apresentar uma classe que usa a biblioteca AutoItX.

Operações com Matrizes e Vetores em MQL5
Matrizes e vetores foram introduzidos na MQL5 para operações eficientes com soluções matemáticas. Os novos tipos oferecem métodos integrados para a criação de código conciso e compreensível que se aproxima da notação matemática. Os arrays fornecem recursos extensos, mas há muitos casos em que as matrizes são muito mais eficientes.

Otimização Walk Forward contínua (Parte 8): Melhorias e correções do programa
O programa foi modificado com base nos comentários e solicitações dos usuários e leitores desta série de artigos. Este artigo contém uma nova versão do otimizador automático. Esta versão implementa os recursos solicitados e fornece outras melhorias, que eu descobri ao trabalhar com o programa.

Gradient boosting no aprendizado de máquina transdutivo e ativo
Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).

Desenvolvendo um EA de negociação do zero (Parte 17): Acessando dados na WEB (III)
Como obter dados da WEB para serem usados em um EA. Então vamos por as mãos na massa, ou melhor começar a codificar um sistema alternativo.

Otimização paralela pelo método de enxame de partículas (Particle Swarm Optimization)
Este artigo descreve uma forma de otimização rápida por meio do método de enxame de partículas e apresenta uma implementação em MQL pronta para ser utilizada tanto no modo thread único dentro do EA quanto no modo multi-thread paralelo com complemento que executado nos agentes locais do testador.

Teoria das Categorias em MQL5 (Parte 1)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.


O MQL4 como uma ferramenta do trader, ou a análise técnica avançada
As transações comerciais são, antes de tudo, um cálculo de probabilidades. O ditado que diz que o ócio é um motivador do progresso revela a razão pela qual todos os indicadores e sistemas de transações que conhecemos foram desenvolvidos. O fato é que a maioria dos novatos no mundo das transações estuda teorias "prontas" de transação. Mas, por sorte, há ainda mais segredos de mercado a serem descobertos, e as ferramentas usadas na análise de movimentos de preços existem, basicamente, sob a forma de indicadores técnicos e conjuntos matemáticos ou estatísticos não realizados. Devemos agradecer a Bill Williams por sua contribuição à teoria dos movimentos de mercado. Mas talvez ainda seja cedo para descansar.

Algoritmos de otimização populacionais: algoritmo de vaga-lumes
Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.

Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (II)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos princípios fundamentais da programação orientada a objetos e aprenda a desenvolver e usar de forma fácil e eficiente uma ou mais GUIs móveis em um único gráfico.

Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (I)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos eventos do gráfico e saiba como projetar e implementar uma GUI móvel simples e múltipla em um único gráfico. O artigo também aborda a adição de elementos à GUI, aumentando sua funcionalidade e apelo estético.


Como usar registros de parada de funcionamento para depurar os seus próprios DLLs
De 25 a 30% de todos os registros de parada de funcionamento recebidos de usuários surgem por conta de erros ocorridos quando funções importadas de dlls personalizados são executadas.

Desenvolvendo um EA multimoeda (Parte 9): Coleta dos resultados de otimização de instâncias individuais da estratégia de trading
Vamos delinear as principais etapas para o desenvolvimento do nosso EA. Uma das primeiras será realizar a otimização de uma instância individual da estratégia de trading desenvolvida. Tentaremos reunir em um único lugar todas as informações necessárias sobre as execuções do testador durante a otimização.

Validação cruzada combinatoriamente simétrica no MQL5
Neste artigo veremos como implementar a verificação cruzada combinatoriamente simétrica no MQL5 puro para medir o grau de ajuste após a otimização de uma estratégia usando o algoritmo completo e lento do testador de estratégias.

Integrando modelos de ML ao Testador de Estratégias (Conclusão): Implementação de um Modelo de Regressão para Previsão de Preço
Este artigo descreve a implementação de um modelo de regressão de árvores de decisão para prever preços de ativos financeiros. Foram realizadas etapas de preparação dos dados, treinamento e avaliação do modelo, com ajustes e otimizações. No entanto, é importante destacar que o modelo é apenas um estudo e não deve ser usado em negociações reais.

Tutorial DirectX (Parte I): Desenhando o primeiro triângulo
Este é um artigo introdutório sobre o DirectX, que descreve as especificidades da operação com a API. Ele deve ajudar a entender a ordem em que seus componentes são inicializados. O artigo contém um exemplo de como escrever um script MQL5 que renderiza um triângulo usando o DirectX.

Redes neurais de maneira fácil (Parte 26): aprendizado por reforço
Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 3): Criando jogadas automáticas e Scripts de Teste em MQL5
Este artigo explora a implementação de jogadas automáticas no jogo da velha Python, integrado com funções MQL5 e testes unitários. O objetivo é aprimorar a interatividade do jogo e garantir a robustez do sistema através de testes MQL5. Ele aborda desde o desenvolvimento da lógica de jogo até a integração e testes práticos, culminando na criação de um ambiente de jogo dinâmico e um sistema integrado confiável.

Desenvolvimento de robô em Python e MQL5 (Parte 1): Pré-processamento de dados
Esse será um guia detalhado sobre como desenvolver um robô de trading baseado em aprendizado de máquina. Realizaremos a coleta e preparação de dados e características. Para a execução do projeto, utilizaremos a linguagem de programação Python e bibliotecas, bem como a plataforma MetaTrader 5.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5.com Integração RestAPI(Parte 2): Funções MQL5 para Interação HTTP com API REST do Jogo da Velha
O artigo detalha como MQL5 pode interagir com Python e FastAPI, usando chamadas HTTP em MQL5 para se comunicar com um jogo da velha em Python. Discute a criação de uma API com FastAPI para essa integração e inclui um script de teste em MQL5, destacando a versatilidade do MQL5, a simplicidade do Python e a eficiência do FastAPI na conexão de diferentes tecnologias para soluções inovadoras.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI(Parte 1): Usando RestAPIs em MQL5
Este artigo aborda a importância das APIs (Interfaces de Programação de Aplicativos) na comunicação entre diferentes aplicativos e sistemas de software. Ele destaca o papel das APIs na simplificação da interação entre aplicativos, permitindo que eles compartilhem dados e funcionalidades de maneira eficiente.

Teoria das Categorias em MQL5 (Parte 14): funtores com ordem linear
Este artigo, parte de uma série de artigos sobre a implementação da teoria das categorias no MQL5, é dedicado aos funtores. Vamos explorar como a ordem linear pode ser mapeada em um conjunto de dados através dos funtores ao analisar dois conjuntos de dados que, à primeira vista, parecem não ter nenhuma conexão entre si.

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)
O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.

Desenvolvendo um EA multimoeda (Parte 1): várias estratégias de trading trabalhando juntas
Existem várias estratégias de trading. Do ponto de vista da diversificação de riscos e do aumento da estabilidade dos resultados de trading, pode ser útil usar várias estratégias em paralelo. Mas se cada estratégia for implementada como um EA separado, gerenciar o trabalho conjunto delas em uma conta de trading se torna muito mais complicado. Para resolver esse problema, é um boa idea implementar o trabalho de diferentes estratégias de trading em um único EA.

Metamodelos em aprendizado de máquina e negociação: Tempo original das ordens de negociação
Metamodelos em aprendizado de máquina: Criação automática de sistemas de negociação com quase nenhum envolvimento humano, o próprio modelo decide como operar e quando operar.

Receitas MQL5 — Banco de dados de eventos macroeconômicos
Este artigo explora como trabalhar com bancos de dados baseados no mecanismo SQLite. Com o objetivo de oferecer conveniência e utilizar eficientemente os princípios da OOP, foi criada a classe CDatabase. Essa classe é responsável pela criação e gerenciamento de um banco de dados de eventos macroeconômicos. Além disso, são apresentados exemplos de como utilizar diferentes métodos da classe CDatabase.

Implementação do teste aumentado de Dickey-Fuller no MQL5
Neste artigo, vamos mostrar como implementar o teste aumentado de Dickey-Fuller e sua aplicação para realizar testes de cointegração usando o método de Engle-Granger.

Modelos de classificação da biblioteca Scikit-learn e sua exportação para o formato ONNX
Neste artigo, exploraremos o uso de todos os modelos de classificação do pacote Scikit-learn para resolver o problema de classificação dos íris de Fisher, tentaremos convertê-los para o formato ONNX e usaremos os modelos resultantes em programas MQL5. Também compararemos a precisão dos modelos originais e suas versões ONNX no Iris dataset completo.

Redes neurais de maneira fácil (Parte 37): atenção esparsa
No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python
Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.

Linguagem de programação visual DRAKON — ferramenta de comunicação Desenvolvedor/Cliente MQL
DRAKON é uma linguagem de programação visual especialmente desenvolvida para facilitar a interação entre especialistas de diferentes áreas (biólogos, físicos, engenheiros...) com programadores em projetos espaciais russos (por exemplo, na criação do complexo "Buran"). Neste artigo, vou falar sobre como o DRAKON torna a criação de algoritmos acessível e intuitivamente compreensível, mesmo para quem nunca teve contato com código, e também como é mais fácil quer seja para o cliente explicar suas ideias ao encomendar robôs de negociação quer seja para o programador cometer menos erros em funções complexas.

Como conectar o MetaTrader 5 ao PostgreSQL
Esse artigo descreve quatro métodos de conexão do código MQL5 ao banco de dados Postgres e apresenta um guia passo a passo para configurar um ambiente de desenvolvimento para um deles, a API REST, por meio do Windows Subsystem for Linux (WSL). Além disso, mostra-se um aplicativo de demonstração para a API com o código MQL5 necessário para inserir dados e consultar as respectivas tabelas, bem como um EA de demonstração para usar esses dados.