アラン・アンドリュースとその時系列分析手法
アラン・アンドリュースは、取引の分野において、現代世界で最も有名な「教育者」の一人です。彼の「ピッチフォーク」は、現代のほとんどの相場分析プログラムに搭載されています。しかし、ほとんどのトレーダーは、このツールが提供するチャンスのほんの一部も利用していません。その上、アンドリュースのオリジナルのトレーニングコースには、ピッチフォークだけでなく(ピッチフォークが主要な道具であることに変わりはないが)、他のいくつかの便利な構造についても説明があります。この記事では、アンドリュースがオリジナルのコースで教えていた驚異的なチャート分析法を紹介しています。画像がたくさん出てきますのでご注意ください。
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する
この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
Rebuyのアルゴリズム:効率を上げるための数学モデル
この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。
OBVによる取引システムの設計方法を学ぶ
今回は、初心者向けのシリーズとして、人気のあるいくつかの指標をもとに取引システムを設計する方法について、新しい記事をお届けします。今回は、新しい指標であるOBV (On Balance Volume)を学び、その使い方とそれに基づいた取引システムの設計を学びます。
DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ
本稿では、指標バッファオブジェクトのクラスを改善して、複数銘柄モードで動作するようにします。これにより、カスタムプログラムで複数銘柄・複数期間指標を作成するための道が開かれます。複数銘柄・複数期間指標標準指標を作成するために、不足している機能を計算バッファオブジェクトに追加します。
Bulls Powerによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける
複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)
システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
2013 年第二四半期 MQL5マーケット 実績
1年半成功裏に実績を積み、MQL5 「マーケット」はトレーダーにとってトレーディング戦略およびテクニカルインディケータの最大のストアとなりました。そこでは世界中の開発者 350 名から提供される約 800 件のトレーディングアプリケーションが提供されています。100,000 件以上のトレーディングプログラムがすでにトレーダーにより購入され、MetaTrader 5 ターミナルにダウンロードされています。
MQL5の圏論(第6回):単射的引き戻しと全射的押し出し
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。
リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。
日足レンジブレイクアウト戦略に基づくMQL5 EAの作成
この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。
PythonとMQL5でロボットを開発する(第1回):データ前処理
機械学習に基づく自動売買ロボットの開発の詳細なガイドです。連載第1回は、データと特徴量の収集と準備についてです。プロジェクトは、Pythonプログラミング言語とライブラリ、およびMetaTrader 5プラットフォームを使用して実装されます。
MQL5オブジェクト指向プログラミング(OOP)について
開発者として、私たちは、特に異なる動作をするオブジェクトがある場合に、コードを重複せずに再利用可能で柔軟なソフトウェアを作成し開発する方法を学ぶ必要があります。これは、オブジェクト指向プログラミングのテクニックと原則を使うことでスムーズにおこなうことができます。この記事では、MQL5オブジェクト指向プログラミングの基本を紹介し、この重要なトピックの原則とプラクティスをソフトウェアでどのように使用できるかを説明します。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。
知っておくべきMQL5ウィザードのテクニック(第39回):RSI (Relative Strength Index)
RSIは、モメンタムオシレーターとして人気があり、最近の価格変動のペースと大きさを測定し、証券価格の過大評価と過小評価の状況を評価します。スピードと大きさに関するこれらの洞察は、反転ポイントを定義する上で鍵となります。このオシレーターを別のカスタムシグナルクラスで動作させ、そのシグナルの特徴を調べてみましょう。まず、ボリンジャーバンドについてのまとめから始めます。
モメンタムによるトレーディングシステムの設計方法を学ぶ
前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。
ニューラルネットワークが簡単に(第58回):Decision Transformer (DT)
強化学習の手法を引き続き検討します。この記事では、一連の行動を構築するパラダイムでエージェントの方策を考慮する、少し異なるアルゴリズムに焦点を当てます。
MQL5の高度な変数とデータ型
変数とデータ型は、MQL5プログラミングだけでなく、どのプログラミング言語でも非常に重要なトピックです。MQL5の変数とデータ型は、単純なものと高度なものに分類できます。単純なものについては前回の記事ですでに述べたので、今回は高度なものを特定し、それについて学ぶことにします。
チャート上で取引を視覚化する(第2回):データのグラフ表示
ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。
取引におけるニューラルネットワーク:時系列の区分線形表現
本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット
この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
データサイエンスと機械学習(第15回):SVM、すべてのトレーダーのツールボックスの必須ツール
取引の未来を形作るサポートベクターマシン(SVM)の不可欠な役割をご覧ください。この包括的なガイドブックでは、SVMがどのように取引戦略を向上させ、意思決定を強化し、金融市場における新たな機会を解き放つことができるかを探求しています。実際のアプリケーション、ステップバイステップのチュートリアル、専門家の洞察でSVMの世界に飛び込みましょう。現代の複雑な取引をナビゲートするのに不可欠なツールを装備してください。SVMはすべてのトレーダーのツールボックスの必需品です。
AD(蓄積/分散、Accumulation/Distribution)による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事へようこそ。今回は、AD(蓄積/分散、Accumulation/Distribution)という新しいテクニカル指標について学び、シンプルなAD取引戦略に基づいてMQL5取引システムを設計する方法を学びます。
ニューラルネットワークが簡単に(第32部):分散型Q学習
この連載で前回Q学習法を紹介しました。この手法は、各行動の報酬を平均化するものです。2017年には、報酬分布関数を研究する際に、より大きな成果を示す2つの研究が発表されました。そのような技術を使って、私たちの問題を解決する可能性を考えてみましょう。
一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)
今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。
スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法
市場構造に基づいた情報に基づく自動売買の意思決定を可能にするためには、スマートマネーコンセプト(Break Of Structure: BOS)とRSI指標の組み合わせが有効です。
ニューラルネットワークが簡単に(第33部):分散型Q学習における分位点回帰
分散型Q学習の研究を続けます。今日は、この方法を反対側から見てみましょう。価格予測問題を解決するために、分位点回帰を利用する可能性を検討します。
MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ
MQL5で様々なポジション操作を管理するための開発者用ツールキットの作成方法をご紹介します。この記事では、MQL5でポジション管理タスクを処理する際に発生するさまざまなエラーの自動処理とレポートも含め、簡単なものから高度なものまでポジション管理操作を実行する関数ライブラリ(ex5)の作成方法を紹介します。
モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。
PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装
PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。
ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム
本連載のこれまでの記事で、2つの強化学習アルゴリズムを見てきました。それぞれに長所と短所があります。このような場合ではよくあることですが、次に、2つの方法の良いところを組み合わせてアルゴリズムにすることが考え出されます。そうすれば、それぞれの欠点が補われることになります。今回は、そのような手法の1つを紹介します。
自動で動くEAを作る(第12回):自動化(IV)
自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
MQL5の圏論(第16回):多層パーセプトロンと関手
本連載16回目となる今回は、関手と、それが人工ニューラルネットワークを使ってどのように実装できるかを見ていきます。当連載ではこれまで、ボラティリティを予測するというアプローチをとってきましたが、今回はポジションのエントリーとエグジットのシグナルを設定するためのカスタムシグナルクラスの実装を試みます。