MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)

前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。
preview
MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)

MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)

この記事では、圏論の重要な柱である自然変換を紹介します。一見複雑に見える定義に注目し、次に本連載の「糧」であるボラティリティ予測について例と応用を掘り下げていきます。
preview
MQL5の圏論(第15回):関手とグラフ

MQL5の圏論(第15回):関手とグラフ

この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
preview
MQL5ストラテジーテスターを理解し、効果的に活用する

MQL5ストラテジーテスターを理解し、効果的に活用する

MQL5のプログラマーや開発者は、重要で貴重なツールをマスターする必要があります。ストラテジーテスターはこれらのツールのうちの1つです。この記事は、MQL5のストラテジーテスターを理解し、使用するための実践的なガイドです。
preview
リプレイシステムの開発—市場シミュレーション(第6回):最初の改善(I)

リプレイシステムの開発—市場シミュレーション(第6回):最初の改善(I)

この記事では、システム全体の安定化を開始します。安定化がなければ次のステップに進むことができない可能性があります。
preview
リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。
preview
MQL4およびMQL5開発のフレームワーク内のOpenAI ChatGPT機能

MQL4およびMQL5開発のフレームワーク内のOpenAI ChatGPT機能

この記事では、エキスパートアドバイザー(EA)、指標、スクリプトの開発にかかる時間と労力を削減するという観点から、OpenAI ChatGPTの機能を理解するために、ChatGPTをいじっていきます。このテクノロジーについて簡単に説明し、MQL4およびMQL5でのプログラミングにこのテクノロジーを正しく使用する方法を説明します。
preview
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
preview
MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント

MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント

この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。
preview
MQL5における圏論(第12回):順序

MQL5における圏論(第12回):順序

この記事は、MQL5でのグラフの圏論実装に従う連載の一部であり、順序について詳しく説明します。2つの主要な順序タイプを検討することで、順序理論の概念が取引の意思決定に情報を提供する上で、モノイド集合をどのようにサポートできるかを検証します。
preview
MQL5の圏論(第11回):グラフ

MQL5の圏論(第11回):グラフ

この記事は、MQL5での圏論の実装を考察する連載の続きです。ここでは、取引システムへのクローズアウト戦略を開発する際に、グラフ理論をモノイドやその他のデータ構造とどのように統合できるかを検討します。
preview
MQL5におけるARIMAモデルによる予測

MQL5におけるARIMAモデルによる予測

この記事では、ARIMAモデルを構築するためのCArimaクラスの開発を継続し、予測を可能にする直感的な手法を追加します。
preview
MQL5の圏論(第9回):モノイド作用

MQL5の圏論(第9回):モノイド作用

MQL5における圏論の実装についての連載を続けます。ここでは、前の記事で説明したモノイドを変換する手段としてモノイド作用を継続し、応用の増加につなげます。
preview
時系列の周波数領域表現:パワースペクトル

時系列の周波数領域表現:パワースペクトル

この記事では、周波数領域での時系列分析に関連する方法について説明します。予測モデルを構築する際に、時系列のパワースペクトルを調べることの有用性を強調します。この記事では、離散フーリエ変換(dft)を用いて時系列を周波数領域で分析することで得られる有用な視点のいくつかを説明します。
preview
Rebuyのアルゴリズム:多通貨取引シミュレーション

Rebuyのアルゴリズム:多通貨取引シミュレーション

本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
preview
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
preview
リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

まずは現状を明らかにすることから始めましょう。今やらなければ、すぐに問題になります。
preview
MQL5の圏論(第8回):モノイド

MQL5の圏論(第8回):モノイド

MQL5における圏論の実装についての連載を続けます。今回は、ルールと単位元を含むことで、圏論を他のデータ分類法と一線を画す始域(集合)としてモノイドを紹介します。
preview
リプレイシステムの開発—市場シミュレーション(第2回):最初の実験(II)

リプレイシステムの開発—市場シミュレーション(第2回):最初の実験(II)

今回は、1分という目標を達成するために、別の方法を試してみましょう。ただし、このタスクは思っているほど単純ではありません。
preview
リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)

リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)

市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。
preview
知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換

知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換

ジョセフ・フーリエによって導入されたフーリエ変換は、複雑なデータの波動点を単純な構成波に分解する手段です。この記事では、トレーダーにとって有益なこの機能を見ていきます。
preview
Rebuyのアルゴリズム:効率を上げるための数学モデル

Rebuyのアルゴリズム:効率を上げるための数学モデル

この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。
preview
MQL5の圏論(第7回):多重集合、相対集合、添字集合

MQL5の圏論(第7回):多重集合、相対集合、添字集合

圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
MQL5でのARIMAトレーニングアルゴリズムの実装

MQL5でのARIMAトレーニングアルゴリズムの実装

この記事では、関数最小化のPowell法を使用して、ボックス・ジェンキンス法の自己回帰和分移動平均モデルを適用するアルゴリズムを実装します。ボックスとジェンキンスは、ほとんどの時系列は2つのフレームワークの一方または両方でモデル化できると述べました。
preview
MQL5でJanus factorを実装する

MQL5でJanus factorを実装する

ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。
preview
MQL5の圏論(第6回):単射的引き戻しと全射的押し出し

MQL5の圏論(第6回):単射的引き戻しと全射的押し出し

圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
preview
データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。
preview
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
preview
MQL5の圏論(第3回)

MQL5の圏論(第3回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
母集団最適化アルゴリズム:ハーモニーサーチ(HS)

母集団最適化アルゴリズム:ハーモニーサーチ(HS)

今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
preview
母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。
preview
アラン・アンドリュースとその時系列分析手法

アラン・アンドリュースとその時系列分析手法

アラン・アンドリュースは、取引の分野において、現代世界で最も有名な「教育者」の一人です。彼の「ピッチフォーク」は、現代のほとんどの相場分析プログラムに搭載されています。しかし、ほとんどのトレーダーは、このツールが提供するチャンスのほんの一部も利用していません。その上、アンドリュースのオリジナルのトレーニングコースには、ピッチフォークだけでなく(ピッチフォークが主要な道具であることに変わりはないが)、他のいくつかの便利な構造についても説明があります。この記事では、アンドリュースがオリジナルのコースで教えていた驚異的なチャート分析法を紹介しています。画像がたくさん出てきますのでご注意ください。
preview
母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。
preview
ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

分散型Q学習アルゴリズムの研究を続けます。以前の記事では、分散型の分位数Q学習アルゴリズムについて検討しました。最初のアルゴリズムでは、与えられた範囲の値の確率を訓練しました。2番目のアルゴリズムでは、特定の確率で範囲を訓練しました。それらの両方で、1つの分布のアプリオリな知識を使用し、別の分布を訓練しました。この記事では、モデルが両方の分布で訓練できるようにするアルゴリズムを検討します。
preview
データサイエンスと機械学習(第10回):リッジ回帰

データサイエンスと機械学習(第10回):リッジ回帰

リッジ回帰は、モデルの複雑さを軽減し、単純な線形回帰に起因する過学習を防ぐためのシンプルな手法です。
preview
データサイエンスと機械学習(第11回):単純ベイズ、取引における確率論

データサイエンスと機械学習(第11回):単純ベイズ、取引における確率論

確率を利用した取引は綱渡りのようなもので、正確さとバランス、そしてリスクに対する鋭い理解が必要です。取引の世界では、確率がすべてです。確率は、成功と失敗、利益と損失の違いになります。確率の力を活用することで、トレーダーは十分な情報に基づいた意思決定をおこない、リスクを効果的に管理し、経済的目標を達成することができます。つまり、経験豊富な投資家であれ、初心者のトレーダーであれ、確率を理解することは、取引の可能性を引き出す鍵になるのです。この記事では、確率を利用したエキサイティングな取引の世界を探求し、取引ゲームを次のレベルに引き上げる方法を紹介します。
preview
母集団最適化アルゴリズム:細菌採餌最適化(BFO)

母集団最適化アルゴリズム:細菌採餌最適化(BFO)

大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。
preview
母集団最適化アルゴリズム:侵入雑草最適化(IWO)

母集団最適化アルゴリズム:侵入雑草最適化(IWO)

雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。
preview
母集団最適化アルゴリズム:コウモリアルゴリズム(BA)

母集団最適化アルゴリズム:コウモリアルゴリズム(BA)

今回は、滑らかな関数に対して良好な収束性を示すコウモリアルゴリズム(BA)について考えてみることにします。