
ニュース取引が簡単に(第4回):パフォーマンス向上
この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。

MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化
この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。

Across Neighbourhood Search (ANS)
この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。

データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用
CatBoost AIモデルは、その予測精度、効率性、散在する困難なデータセットに対する頑健性により、機械学習コミュニティの間で最近大きな人気を博しています。この記事では、外国為替市場を打ち負かすために、この種のモデルをどのように導入するかについて詳しく説明します。

PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装
PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果
第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。

リプレイシステムの開発(第54回):最初のモジュールの誕生
この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル
この記事では、RSIインジケーターに単純なマルコフ連鎖を適用し、インジケーターが主要なレベルを通過した後の価格の挙動を観察します。NZDJPYペアで最も強い買いシグナルと売りシグナルは、RSIがそれぞれ11~20の範囲と71~80の範囲にあるときに生成されるという結論に達しました。データを操作して、保有するデータから直接学習した最適な取引戦略を作成する方法を説明します。さらに、遷移行列を最適に使用することを学習するためにディープニューラルネットワークを訓練する方法を説明します。

データサイエンスとML(第30回):株式市場を予測するパワーカップル、畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)
本稿では、株式市場予測における畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)の動的統合を探求します。CNNのパターン抽出能力と、RNNの逐次データ処理能力を活用します。この強力な組み合わせが、取引アルゴリズムの精度と効率をどのように高めることができるかを見てみましょう。

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。

初心者からエキスパートへ:MQL5での共同デバッグ
問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。

チャート上で取引を視覚化する(第2回):データのグラフ表示
ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。

リプレイシステムの開発(第53回):物事は複雑になる(V)
今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。

MQL5における相関分析の要素:ピアソンのカイ二乗検定による独立性と相関比
この記事では相関分析の古典的なツールについて考察します。簡潔な理論的背景と、ピアソンのカイ二乗独立性検定および相関比の実践的な実装に重点が置かれています。

最も注目すべき人工協調探索アルゴリズムの修正(ACSm)
ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。

リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰
線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。

確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。

人工協調探索(ACS)アルゴリズム
人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。

知っておくべきMQL5ウィザードのテクニック(第36回):マルコフ連鎖を用いたQ学習
強化学習は、教師あり学習、教師なし学習と並んで、機械学習における3つの主要な考え方の1つです。そのため、最適制御、つまり目的関数に最も適した長期的な方針を学習することに関心があります。このような背景から、ウィザードが作成したEAのMLPの学習プロセスにおいて、MLPがどのような役割を果たす可能性があるのかを探ります。

ニュース取引が簡単に(第2回):リスク管理
この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。

チャート上で取引を視覚化する(第1回):分析期間の選択
ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター
PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。

リプレイシステムの開発(第50回):物事は複雑になる(II)
チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。

リプレイシステムの開発(第49回):物事は複雑になる(I)
この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。

行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)
ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。

市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例
この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰
サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み
制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。

MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成
この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。

知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル
ガウス過程カーネルは正規分布の共分散関数であり、予測において役割を果たす可能性があります。MQL5のカスタムシグナルクラスで、このユニークなアルゴリズムを探求し、プライムエントリシグナルやエグジットシグナルとして活用できるかを検証しました。

MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。

知っておくべきMQL5ウィザードのテクニック(第32回):正則化
正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。

ニュース取引が簡単に(第3回):取引の実施
この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。