エキスパートアドバイザーの注文と希望の結果の取得方法
どのように正しく必要条件の明記を記載するのでしょうか?エキスパートアドバイザーやインジケーターを注文する際にプログラマーに期待すべき点と、期待すべきではない点は何でしょうか?やりとりを記録するにはどうすべきで、何に対して特に注意すべきでしょうか?この記事は、これらの質問や、その他多くの人にとって明白ではない様々な質問に対する答えを提供します。
ボリンジャーバンドによる取引システムの設計方法を学ぶ
この記事では、取引の世界で最も人気のある指標の1つであるボリンジャーバンドについて学びます。テクニカル分析を検討し、ボリンジャーバンド指標に基づいてアルゴリズム取引システムを設計する方法を確認します。
トレーディングにおけるOLAPの適用(その4)。テスターレポートの定量的・視覚的分析
この記事では、シングルパスや最適化結果に関連するテスターレポートのOLAP分析のための基本的なツールを提供しています。 このツールは標準フォーマットのファイル(tstとopt)を扱うことができ、グラフィカルなインターフェイスも提供します。 最後にMQLのソースコードを添付します。
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する
この記事では、ビジュアルストラテジービルダーを紹介します。 ユーザーがプログラミングせずにトレードロボットやユーティリティを作成する方法について紹介します。 作成されたEAは、完全に機能し、ストラテジーテスターでテストすることができます。また、クラウドで最適化またはリアルタイムチャートでライブ実行することも可能です。
オープニングレンジブレイクアウト日中取引戦略の解読
オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。
トレーダーのリスクを低減するには
金融市場における取引には広範囲のリスクがつきもので、これらは取引システムのアルゴリズムで考慮されるべきです。そのようなリスクを低減することは、取引で利益を得るために最も重要な課題です。
自己適応アルゴリズムの開発(第I部):基本的なパターンの検索
この連載では、ほとんどの市場要因を考慮した自己適応アルゴリズムの開発を示すとともに、これらの状況を体系化してロジックで説明し、取引活動で考慮に入れる方法を示します。非常に単純なアルゴリズムから始めて、徐々に理論を習得し、非常に複雑なプロジェクトに進化していきます。
MQL5を使用したカスタムインディケータ(平均足)の作成方法
この記事では、MQL5を使用して好みに基づいてカスタムインディケータを作成し、MetaTrader 5でチャートの読み取りに使用したり、自動エキスパートアドバイザー(EA)で使用したりする方法を学びます。
シグナルのクイック評価:トレーディング、ドローダウン/ロードとMFE/ MAE配信チャート
購読者は、多くの場合、シグナルプロバイダーのアカウントの総成長を分析することによって、適切なシグナルを検索します。しかし、特定のトレード戦略の潜在的なリスクを分析することも重要です。この記事では、その性能に基づいてトレードシグナルを評価するための簡単かつ効率的な方法を紹介します。
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング
本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能性が考慮されます。
時間の取扱い(第1部):基本
時間の処理、証券会社のオフセット、夏時間または冬時間への変更を簡素化および明確化する関数とコードスニペット。正確なタイミングは取引において重要な要素になることがあります。現在時刻でロンドンやニューヨークの証券取引所がすでに開いているかまだ開いていないか、外国為替取引の取引時間はいつ開始および終了するかなどです。手動で取引して生活しているトレーダーにとって、これは大きな問題ではありません。
エキスパートアドバイザーの資金管理のためのファンクション
トレード戦略の開発は主に市場に入り、そして、出るためのパターンの探索と、ポジションの維持に注目している。もし自動トレーディングのためにあるパターンをルールとして形式化できれば、トレーダーはポジションの量、マージンのサイズを計算する問題に立ち向かい、さらに貸付資金の安全なレベルを維持して自動モードでオープンなポジションを確実にするであろう。この論説では MQL5 言語を用いてこれらの計算を行う簡単な例を構築する
トレンドとは何か、相場の構造はトレンドかレンジかで決まるのか?
トレーダーはよくトレンドやレンジについて話しますが、トレンドやレンジとは何かを理解している人はほとんどおらず、概念を明確に説明できる人はさらにいません。 基本的な用語について考察することは、多くの場合、偏見や誤解の固まりに悩まされます。 しかし、利益を上げたいのであれば、概念の数学的・論理的な意味を理解する必要があります。 今回は、トレンドとレンジの本質に迫るとともに、相場の構造がトレンドなのか、レンジなのか、何か別のものなのかを定義してみたいと思います。 また、トレンド相場やレンジ相場で利益を出すための最適な戦略についても考えていきたいと思います。
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法
「サポートベクターマシン」は生物情報学分野でこれまで長く利用され、複雑なデータセットを評価し、データ分類すに利用できる有用なパターンを抽出するため数学を利用しています。本稿はサポートベクターマシンとは何か、それがどのように役立つか、またなぜ複雑なパターンを抽出するのに便利かを考察します。そしてそれをマーケットに応用する方法、およびトレードを行う上で将来役立つであろう使用方法を調査します。また「サポートベクターマシン学習ツール」を使用し、読者のみなさんがご自身のトレーディングで実験することができる実用例を提供します。
ディナポリ取引システム
本稿では、ジョー・ディナポリによって開発されたフィボレベルベースの取引システムについて説明します。システムの背後にあるアイデアと主なコンセプトが説明され、それらをさらに明確にする、シンプルな指標が例として示されます。
Expert Advisors最適化のカスタム基準作成
MetaTrader 5 クライアント端末は Expert Advisor パラメータを最適化する幅広い機会を提供します。またストラレジーテスタに含まれる最適化評価基準に対して、開発者には自身の基準を作成するチャンスが与えられています。これは Expert Advisorsを検証し最適化する数えきれない可能性に導きます。本稿ではそのような基準を、複雑なもの単純なもの双方、作成する実践的方法について記述します。
MQL4およびMQL5開発のフレームワーク内のOpenAI ChatGPT機能
この記事では、エキスパートアドバイザー(EA)、指標、スクリプトの開発にかかる時間と労力を削減するという観点から、OpenAI ChatGPTの機能を理解するために、ChatGPTをいじっていきます。このテクノロジーについて簡単に説明し、MQL4およびMQL5でのプログラミングにこのテクノロジーを正しく使用する方法を説明します。
MACDによる取引システムの設計方法を学ぶ
今回は、このシリーズの新しいツール、MACD(Moving Average Convergence Divergence、移動平均収束発散)に基づいた取引システムの設計方法について学びます。
3つのラインブレイクチャートを作成するためのインディケータ
本稿は Steve Nison 氏が著書 "Beyond Candlesticks" で提案している「3つのラインブレークチャート」について取り上げます。このチャートの最大のメリットはそれにより前の変動に関して価格のマイナー変動にフィルターを描けることができることです。チャート作成の原則、インディケータのコード、それに基づくトレーディング戦略例についてお話していこうと思います。
ジグザグの力(第一部)指標基本クラスの開発
多くの研究者は、価格行動の決定に十分な注意を払っていません。同時に、機械学習やニューラルネットワークなどの複雑な方法が使用されます。その場合に生じる最も重要な質問は、特定のモデルを訓練するためにどのデータを供するべきかということです。
レンコチャートにおけるインジケーター
この記事は、MQL5のレンコチャートとその実装の例を紹介します。このインジケーターの修正は、古典的なチャートとは異なります。インジケーターウィンドウ、メインチャート上の両方で構築できます。さらに、ジグザグインジケーターがあります。そのチャートの実装例をいくつかご確認ください。
MQL5で日付と時刻を扱う方法を学ぶ
日付と時刻の取り扱いという、新しい重要なトピックについての新しい記事です。トレーダーとして、あるいは取引ツールのプログラマーとして、日付と時間という2つの側面をいかにうまく、効果的に扱うかを理解することは非常に重要です。そこで今回は、効果的な取引ツールを円滑かつシンプルに作成するために、日付と時刻をどのように扱えばよいのか、私ができる範囲で重要な情報をお伝えします。
ポジション中心のMetaTrader5の環境での注文追跡管理機能付き注文マネージャー
このクラスライブラリは、MetaTrader5のエキスパートアドバイザーに追加し、MetaTrader5のポジション中心のアプローチと比べ、MetaTrader4と類似したオーダー中心のアプローチに書き換えることができます。各ポジションの保護のために、ブローカーによるストップを維持する一方、MetaTrader5のターミナルにて注文を管理することで、上記を実現します。
このプロジェクトは、収益性の高いトレーディングロボットを作成する手助けになります! 少なくとも、そうなるでしょう。
大きなプログラムは小さなファイルから始まり、関数やオブジェクトを追加し続けるにつれてサイズが大きくなります。 ほとんどのトレードロボット開発者は、この問題を処理するためにインクルードファイルを利用しています。 しかし、より良い解決策があります。:それは、プロジェクト内の任意のトレードアプリケーションの開発を開始することです。 そうする理由はたくさんあります。
EAの元のコードを変更することなく、テイクプロフィットの代わりにリミットオーダーを使用する
テイクプロフィットによる決済ではなく、リミットオーダーを使用した決済方法は、フォーラムでも長い間議論の対象でした。 このアプローチの利点は一体何であり、どのようにしてトレードで実現できるでしょうか。 この記事では、このトピックのビジョンを提供します。
販売者や提供者でなくても MetaTrader AppStore 、トレードシグナルサービスから収入を得る方法
販売者や「マーケット」のアプリケーションまたは収益性あるシグナル提供者である必要なく、いますぐに MQL5.com で収入を手にし始めることが可能です。お好きなプロダクツを選択し、さまざまなウェブリソースにそのリンクを掲示します。潜在顧客の心を引きつければ、利益はあなたのものです!
トレードシグナルの多通貨監視(パート2):アプリケーションのビジュアル部分の実装
前回の記事では、アプリケーションフレームワークを作成し、以降のすべてのタスクの基礎としました。 このパートでは、開発工程を進めます: アプリケーションのビジュアル部分を作成し、インターフェイス要素の基本的な相互作用を構成します。
グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか
本稿では、グリッドおよびマーチンゲール取引に適用される機械学習手法について説明します。驚いたことに、世界中のネットではこのアプローチはほとんどまたはまったくカバーされていません。記事を読んだ後は、自分自身の自動売買ボットを作成することができるでしょう。
MQL5での発注を理解する
取引システムを構築する際には、効果的に処理しなければならない作業があります。この作業は、注文の発注、または作成された取引システムに注文を自動的に処理させることです。これはあらゆる取引システムにおいて極めて重要だからです。この記事では、発注が効果的な取引システムを作成する作業のために理解する必要があるほとんどのトピックについて説明します。
ジグザグの力(第二部)データの受け取り、処理、表示の例
本稿の最初の部分では、変更されたジグザグ指標と、そのタイプの指標のデータを受け取るためのクラスについて説明しました。ここでは、これらのツールに基づいて指標を開発する方法を示し、ジグザグ指標によって形成されたシグナルに従って取引を行うことを特徴とするテスト用のEAを作成します。さらに、本稿ではグラフィカルユーザインタフェースを開発するためのEasyAndFastライブラリの新しいバージョンを紹介します。
Expert Advisorの限界と検証
このシンボルは月曜ににトレードできる? ポジションをオープンするのに必要なお金が十分ある? ストップロスが起こった時ロスの大きさは? ペンディングオーダーの数を制限するには? トレード操作が実行されたのは現在のバーそれとも以前のバー? トレードロボットがこの種の検証をできない場合、どんなトレードストラテジーも負け戦略になる可能性があります。本記事はどんなExpert Advisorにおいても便利な検証例を紹介します。
微分とエントロピー解析によるGrokking市場の「記憶」
分数階微分は十分に広い範囲で使用されています。例えば、機械学習アルゴリズムには通常微分された級数が入力されます。 問題は、機械学習モデルが認識できるように、利用可能な履歴に従って新しいデータを表示する必要があることです。本稿では、時系列の微分に対する独自のアプローチを検討します。本稿にはさらに、この微分された級数に基づく自己最適化取引システムの例が含まれています。
MQL5ストラテジーテスターを理解し、効果的に活用する
MQL5のプログラマーや開発者は、重要で貴重なツールをマスターする必要があります。ストラテジーテスターはこれらのツールのうちの1つです。この記事は、MQL5のストラテジーテスターを理解し、使用するための実践的なガイドです。
スプレッドシートを使ってトレード戦略を構築する
この記事では、スプレッドシート(Excel、Calc、Google)を使ってあらゆる戦略を分析できるようにするための基本的な考え方や方法を解説します。 得られた結果をMetaTrader5のテスターと比較します。
MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド
この記事は、MQL5でエキスパートアドバイザー(EA)を構築するための包括的な、究極の初心者ガイドです。擬似コードを使用してEAを構築し、AIが生成したコードのパワーを活用する方法をステップごとに学びましょう。アルゴリズム取引が初めての方にも、スキルアップを目指す方にも、このガイドは効果的なEAを作成するための明確な道筋を提供します。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
トレーディングにおけるニューラルネットワークの実用化。 Python (パートI)
今回は、Pythonによるディープニューラルネットワークのプログラミングに基づいたトレードシステムの実装を一つ一つ分析します。 Googleが開発した機械学習ライブラリ「TensorFlow」を使って行います。 また、ニューラルネットワークの記述にはKerasライブラリを使用します。