
タブーサーチ(TS)
この記事では、最初期かつ最も広く知られているメタヒューリスティック手法の一つであるタブーサーチアルゴリズムについて解説します。初期解の選択や近傍解の探索から始め、特にタブーリストの活用に焦点を当てながら、アルゴリズムの動作を詳しく見ていきます。本記事では、タブーサーチの主要な特徴と要素について取り上げます。

MQL5での暗号化の探索:ステップごとのアプローチ
この記事では、MQL5内での暗号化の統合について探り、取引アルゴリズムのセキュリティと機能を強化する方法を紹介します。主要な暗号化手法と、それらを自動取引に実際に実装する方法について説明します。

MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化
チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。

MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張
エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。

知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC
強化学習において、リプレイバッファは特にDQNやSACのようなオフポリシーアルゴリズムにおいて重要な役割を果たします。これにより、メモリバッファのサンプリング処理が注目されます。たとえばSACのデフォルト設定では、このバッファからランダムにサンプルを取得しますが、Prioritized Experience Replay (PER)を用いることで、TDスコア(時間差分誤差)に基づいてサンプリングを調整することができます。本稿では、強化学習の意義を改めて確認し、いつものように交差検証ではなく、この仮説だけを検証する、ウィザードで組み立てたエキスパートアドバイザー(EA)を用いて考察します。

適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法
この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。

JSONをマスターする:MQL5で独自のJSONリーダーをゼロから作成する
オブジェクトと配列の処理、エラーチェック、シリアル化を備えたMQL5でカスタムJSONパーサーを作成する手順をステップバイステップで説明します。MetaTrader5でJSONを処理するためのこの柔軟なソリューションを使用して、取引ロジックと構造化データを橋渡しするための実用的な洞察を得ることができます。

Connexusのクライアント(第7回):クライアント層の追加
この記事では、Connexusライブラリの開発を続けます。この章では、リクエストの送信と注文の受信を担当するCHttpClientクラスを構築します。また、モックの概念についても取り上げ、ライブラリをWebRequest関数から切り離すことで、ユーザーの柔軟性を高めます。

無政府社会最適化(ASO)アルゴリズム
この記事では、無政府社会最適化(ASO)アルゴリズムに触れ、無政府社会(中央集権的な権力や様々な種類のヒエラルキーから解放された社会的相互作用の異常なシステム)の参加者の非合理的で冒険的な行動に基づくアルゴリズムが、解空間を探索し、局所最適の罠を回避できることを議論します。本稿では、連続問題にも離散問題にも適用可能な統一的なASO構造を提示します。