
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)
(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。

ブレインストーム最適化アルゴリズム(第1部):クラスタリング
この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。

因果推論における時系列クラスタリング
機械学習におけるクラスタリングアルゴリズムは、元データを類似した観察結果を持つグループに分けることができる重要な教師なし学習法です。これらのクラスタを用いることで、特定の市場クラスタを分析したり、新しいデータを基に最も安定したクラスタを探索したり、因果関係を推定したりすることが可能です。本稿では、Pythonによる時系列クラスタリングのための独自の手法を提案します。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第5回)
この記事は、MQTT 5.0プロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の第5回です。今回は、PUBLISHパケットの構造、Publishフラグの設定方法、Topic Name文字列のエンコード方法、必要な場合のPacket Identifierの設定方法について説明します。

Rest APIを統合したMQL5強化学習エージェントの開発(第4回):MQL5でクラス内の関数を整理する
この記事では、MQL5における手続き型コーディングからオブジェクト指向プログラミング(OOP)への移行について、REST APIとの統合を中心に説明します。今日は、HTTPリクエスト関数(GETとPOST)をクラスにまとめる方法について説明します。コードのリファクタリングについて詳しく見ていき、孤立した関数をクラスメソッドに置き換える方法を紹介します。記事には実践的な例とテストが含まれています。

MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信
この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。

Across Neighbourhood Search (ANS)
この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。

MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)
この第3部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルヘッジEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。

母集団最適化アルゴリズム:社会集団の進化(ESG)
多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。

GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する
この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。

因果推論における傾向スコア
本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)
本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。

RestAPIを統合したMQL5強化学習エージェントの開発(第1回):MQL5でRestAPIを使用する方法
この記事では、異なるアプリケーションやソフトウェアシステム間の相互作用におけるAPI (Application Programming Interface)の重要性についてお話しします。アプリケーション間のやり取りを簡素化し、データや機能を効率的に共有することを可能にするAPIの役割を見ていきます。

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理
進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。

Candlestick Trend Constraintモデルの構築(第7回):EA開発モデルの改良
今回は、エキスパートアドバイザー(EA)開発のための指標の詳細な準備について掘り下げていきます。議論の中では、現行バージョンの指標にさらなる改良を加えることで、その精度と機能性の向上を図ります。さらに、前バージョンがエントリポイントの識別に限られていた制約に対応するため、新たにエグジットポイントを特定する機能を導入します。

RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数
この記事では、MQL5がPythonやFastAPIとどのように相互作用できるか、MQL5のHTTP呼び出しを使用してPythonの三目並べゲームと相互作用する方法について説明します。この記事では、この統合のためのFastAPIを使用したAPIの作成について説明し、MQL5でのテストスクリプトを提供することで、MQL5の多用途性、Pythonのシンプルさ、そして革新的なソルーションを生み出すために異なるテクノロジーを接続するFastAPIの有効性を強調しています。

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)
この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。

MQL5における組合せ対称交差検証法
この記事では、ストラテジーテスターの低速&完全アルゴリズムを使用してストラテジーを最適化した後に過剰学習が発生する可能性の程度を測定するために、純粋なMQL5における組合せ対称交差検証法の実装を紹介します。

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択
以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)
良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。

MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(最終回)
この記事は、MQTT 5.0プロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の最終回です。ライブラリはまだ製品化されていませんが、この部分では、他の証券会社から入手したティック(またはレート)でカスタム銘柄を更新するためにクライアントを使用します。ライブラリの現在の状況、MQTT 5.0プロトコルに完全に準拠するために足りないもの、可能なロードマップ、そしてその開発をフォローし貢献する方法についての詳細は、この記事の最後をご覧ください。

プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA
MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト
経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第3部)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発手順を説明する連載の第3部です。今回は、CONNECT/CONNACKパケット交換の操作時の動作部分を実装するために、テスト駆動開発をどのように使用しているかについて詳しく説明します。この手順の最後に、クライアントは、接続の試みから生じる可能性のあるサーバー結果のどれに対しても、絶対的に、適切に振る舞うことができなければなりません。

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。

プライスアクション分析ツールキットの開発(第8回):Metrics Board
最も強力なプライスアクション分析ツールの一つである「Metrics Board」は、ワンクリックで重要な市場指標を即座に表示し、市場分析を効率化するように設計されています。各ボタンには高値・安値のトレンド分析、出来高、その他の主要な指標の解析といった特定の機能が割り当てられています。このツールは、最も必要なタイミングで正確なリアルタイムデータを提供します。この記事では、その機能についてさらに詳しく掘り下げていきましょう。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)
本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)
このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。

母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)
前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第6回)
この記事は、MQTT 5.0プロトコル用のネイティブMQL5クライアントの開発ステップを説明する連載の第6部です。今回は、私たちの最初のリファクタリングにおける主な変更点、私たちがどのようにしてパケット構築クラスのための実行可能な設計図にたどり着いたか、どのようにPUBLISHとPUBACKパケットを構築しているか、そしてPUBACK Reason Codeの背後にあるセマンティクスについてコメントします。

PythonからMQL5へ:量子に着想を得た取引システムへの旅
この記事では、量子に着想を得た取引システムの開発について検討し、Pythonプロトタイプから実際の取引のためのMQL5実装への移行について説明します。このシステムは、量子シミュレーターを使用した従来のコンピューター上で実行されますが、重ね合わせや量子もつれなどの量子コンピューティングの原理を使用して市場の状態を分析します。主な機能には、8つの市場状態を同時に分析する3量子ビットシステム、24時間のルックバック期間、および市場分析用の7つのテクニカル指標が含まれます。精度率は控えめに思えるかもしれませんが、適切なリスク管理戦略と組み合わせると大きな優位性が得られます。

MQL5で取引管理者パネルを作成する(第6回):取引管理パネル(II)
この記事では、多機能管理パネルの取引管理パネル(Trade Management Panel)を強化します。コードを簡素化し、読みやすさ、保守性、効率性を向上させる強力なヘルパー関数を導入します。また、追加のボタンをシームレスに統合し、インターフェイスを強化して、より幅広い取引タスクを処理する方法も紹介します。ポジションの管理、注文の調整、ユーザーとのやり取りの簡素化など、このガイドは、堅牢でユーザーフレンドリーな取引管理パネルの開発に役立ちます。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)
今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。

MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)
取引管理者の役割はTelegram通信だけにとどまらず、注文管理、ポジション追跡、インターフェイスのカスタマイズなど、さまざまな制御アクティビティにも携わります。この記事では、MQL5の複数の機能をサポートするためにプログラムを拡張するための実用的な洞察を共有します。このアップデートは、主にコミュニケーションに重点を置くという現在のAdminパネルの制限を克服し、より幅広いタスクを処理できるようにすることを目的としています。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)
本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。