
自動で動くEAを作る(第03回):新しい関数
今日は、自動モードでシンプルかつ安全に動作するエキスパートアドバイザー(EA)を作成する方法を紹介します。前回は、自動売買EAで使用するオーダーシステムの開発に着手しましたが、必要な関数のうち1つしか作っていません。

自動で動くEAを作る(第02回):コードを始める
今日は、自動モードでシンプルかつ安全に動作するエキスパートアドバイザー(EA)を作成する方法を紹介します。前回は、自動売買をおこなうEAの作成に進む前に、誰もが理解しておくべき最初のステップについて説明しました。概念と構造が検討されました。

ニューラルネットワークが簡単に(第32部):分散型Q学習
この連載で前回Q学習法を紹介しました。この手法は、各行動の報酬を平均化するものです。2017年には、報酬分布関数を研究する際に、より大きな成果を示す2つの研究が発表されました。そのような技術を使って、私たちの問題を解決する可能性を考えてみましょう。

ニューラルネットワークが簡単に(第31部):進化的アルゴリズム
前回の記事では、非勾配最適化手法の調査を開始しました。遺伝的アルゴリズムについて学びました。今日は、このトピックを継続し、進化的アルゴリズムの別のクラスを検討します。

Frames Analyzerツールによるタイムトレード間隔の魔法
Frames Analyzerとは何でしょうか。これは、パラメータ最適化の直後に作成されたMQDファイルまたはデータベースを読み取ることにより、ストラテジーテスター内外でパラメータ最適化中に最適化フレームを分析するためのエキスパートアドバイザー(EA)のプラグインモジュールです。これらの最適化の結果はFrames Analyzerツールを使用している他のユーザーと共有して、結果について話し合うことができます。

ニューラルネットワークが簡単に(第30部):遺伝的アルゴリズム
今日はちょっと変わった学習法を紹介したいと思います。ダーウィンの進化論からの借用と言えます。先に述べた手法よりも制御性は劣るでしょうが、非差別的なモデルの訓練が可能です。

ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム
本連載のこれまでの記事で、2つの強化学習アルゴリズムを見てきました。それぞれに長所と短所があります。このような場合ではよくあることですが、次に、2つの方法の良いところを組み合わせてアルゴリズムにすることが考え出されます。そうすれば、それぞれの欠点が補われることになります。今回は、そのような手法の1つを紹介します。

ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム
強化学習法の研究を続けます。前回は、Deep Q-Learning手法に触れました。この手法では、特定の状況下でとった行動に応じて、これから得られる報酬を予測するようにモデルを訓練します。そして、方策と期待される報酬に応じた行動がとられます。ただし、Q関数を近似的に求めることは必ずしも可能ではありません。その近似が望ましい結果を生み出さないこともあります。このような場合、効用関数ではなく、行動の直接的な方針(戦略)に対して、近似的な手法が適用されます。その1つが方策勾配です。

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善
前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。

ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)
前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。

ニューラルネットワークが簡単に(第20部):オートエンコーダ
教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。

一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)
今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール
アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。

ニューラルネットワークが簡単に(第18部):アソシエーションルール
この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。

一からの取引エキスパートアドバイザーの開発(第21部):新規受注システム(IV)
まだ完成していないものの、ようやくビジュアルなシステムが動き出します。ここでは主な変更を完成します。かなりの数になりますが、どれも必要なものばかりです。全体的にはなかなか面白いものになりそうです。

一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)
新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)
今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。

ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。

モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。

一からの取引エキスパートアドバイザーの開発(第18部):新規受注システム(I)
今回は新規受注システムの第一弾です。本連載で紹介し始めてから、このEAは、同じチャート上注文システムモデルを維持しながら様々な変更と改良を受けてきました。

ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。

ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング
クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。

ニューラルネットワークが簡単に(第14部):データクラスタリング
前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。

一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)
本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。

一からの取引エキスパートアドバイザーの開発(第12部):Times and Trade (I)
今日は、注文の流れを読むために、高速な解釈を持つTimes & Tradeを作成します。これは、システムを構築していくうえで最初の部分です。次回は、足りない情報を補って、システムを完成させる予定です。この新しい機能を実装するために、エキスパートアドバイザー(EA)のコードにいくつかの新しいものを追加する必要があります。

一からの取引エキスパートアドバイザーの開発(第11部):両建て注文システム
この記事では、両建て注文システムを作成します。先物契約は、トレーダーを極度に苦しめる資産タイプですが、なにがそんなに難しいのでしょうか。

一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)
この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。

一からの取引エキスパートアドバイザーの開発(第7部):価格別出来高の追加(I)
価格別出来高は、現存する最も強力なインジケータの1つです。ある程度の自信を持って取引するには、チャートにはこのインジケータが必須です。このインジケータはよく「テープリーディング」を好むトレーダーに使われますが、プライスアクションのみを使用して取引する場合にも活用できます。

単一チャート上の複数インジケータ(第06部):MetaTrader 5をRADシステムに変える(II)
前回の記事では、MetaTrader 5のオブジェクトを使ってChart Tradeを作成し、プラットフォームをRADシステムに変える方法を紹介しました。このシステムは非常によく機能しており、読者の多くは、提案されたシステムの機能を拡張できるようなライブラリを作成することをお考えになったのではないでしょうか。これに基づいて、より直感的で使い勝手の良いEAを開発することも可能でしょう。

単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)
プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。

チャートをより面白くする: 背景の追加
多くのワークステーションには、ユーザーに関する何かを語る代表的な画像が含まれています。これらの画像は、作業環境をより美しくエキサイティングなものにします。背景を追加してチャートをより面白くする方法を見てみましょう。

アルゴリズム取引システムを設計する理由と方法を学ぶ
この記事では、MQL5のいくつかの基本に言及した後で、単純なアルゴリズム取引システムを設計することによって初心者がアルゴリズム取引システム(エキスパートアドバイザー)を設計するためのMQLの基本を示します。