MQL5言語での自動売買ロボットのプログラミング例に関する記事

icon

エキスパートアドバイザーはプログラミングの「頂点」であり、それぞれの自動取引の開発者の求めたゴールです。このセクションの記事を読んで、ご自分の自動売買ロボットを作成してください。記述された手順に従うことにより、どのように自動取引システムを作成し、デバッグし、テストするかを学びます。

記事はMQL5プログラミングを教えるだけでなく、どのようにトレーディングアイデアとテクニックを導入するかを示します。どのようにトレーリングストップをプログラムするか、どのように資金管理を適用するか、どのようにインディケータ値を取得するかなど、さらに多くのことを学べます。

新しい記事を追加
最新 | ベスト
preview

ニューラルネットワークが簡単に(第93回):周波数領域と時間領域における適応予測(最終回)

本稿では、時系列予測において2つのブロック(周波数と時間)の結果を適応的に組み合わせるATFNetモデルのアプローチの実装を継続します。
preview

初心者からエキスパートへ:MQL5での共同デバッグ

問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。
preview

MQL5用スキャルピングオーダーフロー

このMetaTrader 5エキスパートアドバイザー(EA)は、高度なリスク管理を備えたスキャルピングオーダーフロー戦略を実装しています。複数のテクニカル指標を使用し、オーダーフローの不均衡に基づいて取引機会を特定します。バックテストは潜在的な収益性を示しているが、特にリスク管理と取引結果の比率において、さらなる最適化の必要性を強調しています。経験豊富なトレーダーに適していますが、本番運用の前に十分なテストと理解が必要です。
preview

ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測

FreDF法の著者は、周波数領域と時間領域を組み合わせた予測の利点を実験的に確認しました。しかし、重みハイパーパラメータの使用は、非定常時系列には最適ではありません。この記事では、周波数領域と時間領域における予測の適応的組み合わせの方法について学びます。
preview

PSAR、平均足、ディープラーニングを組み合わせて取引に活用する

このプロジェクトでは、ディープラーニングとテクニカル分析の融合を探求し、FXの取引戦略を検証します。EUR/USDの動きを予測するために、PSAR、SMA、RSIのような伝統的な指標とともにONNXモデルを採用し、迅速な実験のためにPythonスクリプトを使用します。MetaTrader 5のスクリプトは、この戦略をライブ環境に導入し、ヒストリカルデータとテクニカル分析を使用して、情報に基づいた取引決定をおこないます。バックテストの結果は、積極的な利益追求よりもリスク管理と着実な成長に重点を置いた、慎重かつ一貫したアプローチを示しています。
preview

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。
preview

MQL5エキスパートアドバイザーに自動最適化を実装する方法

エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。
preview

ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例

以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。
preview

MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加

この記事では、インタラクティブなインラインボタンをMQL5エキスパートアドバイザー(EA)に統合し、Telegram経由でリアルタイムにコントロールできるようにします。各ボタンを押すたびに特定のアクションがトリガーされ、ユーザーにレスポンスが返されます。また、Telegramメッセージやコールバッククエリを効率的に処理するための関数もモジュール化します。
preview

MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。
preview

ニュース取引が簡単に(第2回):リスク管理

この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。
preview

ニューラルネットワークが簡単に(第90回):時系列の周波数補間(FITS)

FEDformer法を研究することで、時系列表現の周波数領域への扉を開きました。この新しい記事では、私たちが始めたトピックを続けます。分析をおこなうだけでなく、特定の分野におけるその後の状態を予測することができる手法について考えてみたいと思います。
preview

ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)

これまで検討してきたすべてのモデルは、環境の状態を時系列として分析します。ただし、時系列は周波数特徴の形式で表現することもできます。この記事では、時系列の周波数成分を使用して将来の状態を予測するアルゴリズムを紹介します。
preview

市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例

この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。
preview

MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上

の記事では、MQL5からTelegramへのメッセージおよびスクリーンショット送信に使用されている既存コードを、再利用可能なモジュール関数へと整理し、リファクタリングをおこないます。これによりプロセス全体が効率化され、複数インスタンスでの実行効率が高まるだけでなく、コードの管理も容易になります。
preview

MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

この記事では、チャートのスクリーンショットを画像データとしてエンコードし、HTTPリクエストを通じてTelegramチャットに送信するMQL5のエキスパートアドバイザー(EA)を作成します。この画像のエンコードと送信の統合によって、既存のMQL5-Telegramシステムが強化され、Telegram上で直接視覚的な取引洞察を提供できるようになります。
preview
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
preview
古典的な戦略を再構築する(第6回):多時間枠分析

古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
preview
古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

この連載では、古典的な戦略を再検討し、AIを使って戦略を改善できるかどうかを検証します。今日の記事では、複数の相関する証券をまとめて分析するという一般的な戦略について検討し、エキゾチックな通貨ペアであるUSDZAR(米ドル/南アフリカランド)に焦点を当てます。
preview
古典的な戦略を再構築する(第4回):SP500と米財務省中期証券

古典的な戦略を再構築する(第4回):SP500と米財務省中期証券

この連載では、最新のアルゴリズムを用いて古典的な取引戦略を分析し、AIによって戦略を改善できるかどうかを検証します。本日の記事では、SP500と米財務省中期証券との関係を活用した古典的な取引手法を再考します。
preview
ニュース取引が簡単に(第3回):取引の実施

ニュース取引が簡単に(第3回):取引の実施

この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。
preview
あらゆるタイプのトレーリングストップを開発してEAに接続する方法

あらゆるタイプのトレーリングストップを開発してEAに接続する方法

この記事では、様々なトレーリングストップを簡単に作成するためのクラスと、トレーリングストップを任意のEAに接続する方法について説明します。
preview
アルゴリズム取引のリスクマネージャー

アルゴリズム取引のリスクマネージャー

本稿の目的は、リスクマネージャーを利用する必要性を証明し、アルゴリズム取引におけるリスク管理の原則を別クラスで実践することで、金融市場におけるデイ取引と投資におけるリスク標準化アプローチの有効性を誰もが検証できるようにすることです。この記事では、アルゴリズム取引用のリスクマネージャークラスを作成します。これは、手動取引のリスクマネージャーの作成について述べた前回の記事の論理的な続きです。
preview
ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
preview
SMAとEMAを使った自動最適化された利益確定と指標パラメータの例

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例

この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信

MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信

この記事では、移動平均クロスオーバーシグナルをTelegramに送信するMQL5-Telegram統合エキスパートアドバイザー(EA)を作成します。移動平均クロスオーバーから売買シグナルを生成し、MQL5で必要なコードを実装し、統合がシームレスに機能するようにするプロセスを詳しく説明します。その結果、リアルタイムの取引アラートをTelegramのグループチャットに直接提供するシステムが完成します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信

MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信

この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。
preview
Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

この記事では、RSIと移動平均指標に基づいて自動売買をおこなうDeus EAの実装手順を概説します。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

機械学習モデルには、様々な調整可能なパラメータがあります。この連載では、SciPyライブラリを使用して、特定の市場に合うようにAIモデルをカスタマイズする方法を探ります。
preview
古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

本連載では、古典的な取引戦略を実証的に分析し、AIを用いてそれらの改善が可能かどうかを検証します。本日の議論では、線形判別分析モデルを用いて高値更新と安値更新の予測に挑戦します。
preview
MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

ボリンジャーバンド売買戦略に基づくMQL5での自動売買アルゴリズム実装のためのステップごとのガイドです。トレーダーに役立つEAの作成に基づく詳細なチュートリアルです。
preview
ソケットを使ったツイッターのセンチメント分析

ソケットを使ったツイッターのセンチメント分析

この革新的な取引ボットは、MetaTrader 5とPythonを統合し、リアルタイムのソーシャルメディアセンチメント分析を活用して自動売買の意思決定をおこないます。特定の金融商品に関連するツイッターのセンチメントを分析することで、ボットはソーシャルメディアのトレンドを実用的な取引シグナルに変換します。ソケット通信によるクライアントサーバーアーキテクチャを採用しており、MT5の取引機能とPythonのデータ処理能力とのシームレスな相互作用を実現しています。このシステムは、クオンツファイナンスと自然言語処理の組み合わせが持つ可能性を示し、代替データソースを活用したアルゴリズム取引への最先端アプローチを提供します。このボットは将来性を示す一方で、より高度なセンチメント分析技術やリスク管理戦略の改善といった今後強化すべき分野も明らかにしています。
preview
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
preview
古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

本稿では、線形判別分析(LDA: Linear Discriminant Analysis)とボリンジャーバンドを統合し、戦略的市場参入シグナルの生成を目的としたカテゴリ別ゾーン予測を活用する取引戦略を考察します。
preview
ニューラルネットワークが簡単に(第87回):時系列パッチ

ニューラルネットワークが簡単に(第87回):時系列パッチ

予測は時系列分析において重要な役割を果たします。この新しい記事では、時系列パッチの利点についてお話しします。
preview
ニューラルネットワークが簡単に(第86回):U字型Transformer

ニューラルネットワークが簡単に(第86回):U字型Transformer

時系列予測アルゴリズムの研究を続けます。この記事では、もう1つの方法であるU字型Transformerについて説明します。
preview
ニューラルネットワークが簡単に(第85回):多変量時系列予測

ニューラルネットワークが簡単に(第85回):多変量時系列予測

この記事では、線形モデルとTransformerの長所を調和的に組み合わせた、新しい複雑な時系列予測手法を紹介します。
preview
ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)

ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)

入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。
preview
ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム

ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム

この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。
preview
ニューラルネットワークが簡単に(第82回):常微分方程式モデル(NeuralODE)

ニューラルネットワークが簡単に(第82回):常微分方程式モデル(NeuralODE)

この記事では、環境状態のダイナミクスを研究することを目的とした別のタイプのモデルについて説明します。