MQL5言語のプログラミング例に関する記事

icon

MQL5言語でMetaTraderプラットフォームのインジケータと自動売買ロボットを作成する方法を示すコード例を含む膨大な記事のコレクションにアクセスします。ソースコードは記事に添付されているので、MetaEditorで開いて実行して、アプリがどのように機能するかを確認できます。

これらの記事は自動取引初心者にも、プログラム経験があるプロのトレーダーにも役に立つでしょう。それらは単に例を特徴とするだけではなく、新しいアイデアも含んでいます。

新しい記事を追加
最新 | ベスト
preview

初級から中級へ:FOR文

この記事では、FOR文の最も基本的な概念について解説します。ここで紹介する内容をしっかり理解することは非常に重要です。他の制御文と異なり、FOR文にはいくつか特有の癖があり、それが原因で複雑になりやすい側面があります。ですので、理解が追いつかないまま放置せず、できるだけ早い段階から学習と実践を始めるようにしましょう。。
preview

手動取引のリスクマネージャー

この記事では、手動取引用のリスクマネージャークラスをゼロから書く方法について詳しく説明します。このクラスは、自動化プログラムを使用するアルゴリズムトレーダーが継承するための基本クラスとしても使用できます。
preview

DoEasy - コントロール(第30部):ScrollBarコントロールのアニメーション化

今回は、ScrollBarコントロールの開発の続きと、マウスインタラクション機能の実装を開始します。さらに、マウスの状態フラグやイベントのリストも充実させる予定です。
preview

ブレインストーム最適化アルゴリズム(第1部):クラスタリング

この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。
preview

DoEasy-コントロール(第20部):SplitContainer WinFormsオブジェクト

今回の記事では、MS Visual StudioツールキットからSplitContainerコントロールの開発を開始します。このコントロールは、垂直または水平の可動セパレータで区切られた2つのパネルで構成されています。
preview

流動性狩り取引戦略

流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。
preview

MQL5における動的時間伸縮を用いたパターン認識

本稿では、金融時系列における予測パターンを特定する手段として、動的時間伸縮の概念について論じます。その仕組みと、純粋なMQL5での実装を紹介します。
preview

MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略

今日は私たちと一緒にUSDJPYペアを中心とした取引戦略の構築に挑戦するしましょう。日足のローソク足パターンは、潜在的により強い動きがあるため、日足パターンで形成されるローソク足パターンを取引します。私たちの当初の戦略は利益を生み、これにより獲得した資本を保護するために、戦略を継続的に改良し、安全性をさらに高める努力を続けることができました。
preview

Rest APIを統合したMQL5強化学習エージェントの開発(第4回):MQL5でクラス内の関数を整理する

この記事では、MQL5における手続き型コーディングからオブジェクト指向プログラミング(OOP)への移行について、REST APIとの統合を中心に説明します。今日は、HTTPリクエスト関数(GETとPOST)をクラスにまとめる方法について説明します。コードのリファクタリングについて詳しく見ていき、孤立した関数をクラスメソッドに置き換える方法を紹介します。記事には実践的な例とテストが含まれています。
preview

Across Neighbourhood Search (ANS)

この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。
preview

行列分解:基本

ここでの目的は教訓を得ることなので、できるだけシンプルに話を進めたいと思います。具体的には、必要な行列の乗算だけを実装します。行列とスカラーの乗算をシミュレートするにはこれで十分であることが今日わかるでしょう。行列分解を実装する際に多くの人が直面する最大の課題は、スカラーの分解と異なり、因子の順序が結果に影響を与えるため、行列の場合はその点に注意が必要だということです。
preview

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

本日は、勝ちトレードでストップアウトされる回数を最小限に抑えるためのアルゴリズム的手法を探るディスカッションにご参加ください。この問題は非常に難易度が高く、取引コミュニティで見られる多くの提案は、明確で一貫したルールに欠けているのが実情です。私たちはこの課題に対してアルゴリズム的なアプローチを用いることで、トレードの収益性を高め、1回あたりの平均損失を減らすことに成功しました。とはいえ、ストップアウトを完全に排除するには、まださらなる改良が必要です。私たちの解決策は、それには至らないものの、誰にとっても試す価値のある良い第一歩です。
preview

母集団最適化アルゴリズム:社会集団の進化(ESG)

多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。
preview

複数の商品を同時に取引する際のリスクバランス

この記事では、初心者が複数の商品を同時に取引する際のリスクバランスを取るためのスクリプトの実装をゼロから書けるようにします。また、経験豊富なユーザーは、この記事で提案されたオプションに関連して、ソリューションを実行するための新しいアイデアが得られるかもしれません。
preview

母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。
preview

MQL5の圏論(第4回):スパン、実験、合成

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview

多銘柄多期間指標のDRAW_ARROW描画タイプ

この記事では、多銘柄多期間矢印指標の描画について見ていきます。また、現在のチャートの銘柄/期間と一致しない銘柄/期間で計算された矢印指標のデータを示す矢印を正しく表示するためのクラスメソッドを改善します。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

機械学習モデルには、様々な調整可能なパラメータがあります。この連載では、SciPyライブラリを使用して、特定の市場に合うようにAIモデルをカスタマイズする方法を探ります。
preview
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
preview
ログレコードをマスターする(第3回):ログを保存するためのハンドラの調査

ログレコードをマスターする(第3回):ログを保存するためのハンドラの調査

この記事では、ログライブラリのハンドラの概念を説明し、その仕組みを理解するとともに、コンソール、データベース、ファイルの3種類の基本的な実装を作成します。今後の記事に向けて、ハンドラの基本構造から実践的なテストまでを網羅し、完全な機能実装の基盤を整えます。
preview
ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

新たな旅の始まりへようこそ。この記事は、MQL5言語で開発する方向けに、ログ操作のライブラリを段階的に作成するという特別な連載の最初の記事です。
preview
リプレイシステムの開発(第32回):受注システム(I)

リプレイシステムの開発(第32回):受注システム(I)

これまで開発してきたものの中で、このシステムが最も複雑であることは、おそらく皆さんもお気づきでしょうし、最終的にはご納得いただけると思います。あとは非常に単純なことですが、取引サーバーの動作をシミュレーションするシステムを作る必要があります。取引サーバーの操作方法を正確に実装する必要性は、当然のことのように思えます。少なくとも言葉ではです。ただし、リプレイ/シミュレーションシステムのユーザーにとって、すべてがシームレスで透明なものとなるようにする必要があります。
preview
最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。
preview
MQL5で古典的な戦略を再構築する(第3回):FTSE100予想

MQL5で古典的な戦略を再構築する(第3回):FTSE100予想

この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、FTSE100について調べ、指数を構成する個別銘柄の一部を使って指数の予測を試みます。
preview
MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

本日は、現在開発中の取引管理パネルのセキュリティ強化について説明します。Telegram APIを統合し、2要素認証(2FA)を実現する新しいセキュリティ戦略にMQL5を実装する方法を探ります。このディスカッションでは、MQL5を活用してセキュリティ対策を強化する方法について貴重な洞察を得ることができます。さらに、MathRand関数の機能に焦点を当て、セキュリティフレームワーク内でどのように効果的に活用できるかを検討します。さらに詳しく知りたい方は、読み続けてください。
preview
GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する

GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する

この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。
preview
母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。
preview
純粋なMQL5におけるエネルギーベースの学習を用いた特徴量選択アルゴリズム

純粋なMQL5におけるエネルギーベースの学習を用いた特徴量選択アルゴリズム

この記事では、「FREL:A stable feature selection algorithm」と題された学術論文に記載された、Feature Weighting as Regularized Energy-Based Learningと呼ばれる特徴量選択アルゴリズムの実装を紹介します。
preview
GMDH (The Group Method of Data Handling):MQL5で組合せアルゴリズムを実装する

GMDH (The Group Method of Data Handling):MQL5で組合せアルゴリズムを実装する

この記事では、MQL5における組合せアルゴリズムと、その改良版である組合せ選択(Combinatorial Selective)アルゴリズムの実装について、データ処理のグループ法アルゴリズムファミリーの探求を続けます。
preview
MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。
preview
制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

この記事では、MetaTrader 5端末の設定タブでCustom Maxを選択する際に、複数の目的と制約条件を持つ最適化問題を実装する方法を紹介します。最適化問題の例は、ドローダウンが10%未満、連敗回数が5回未満、1週間の取引回数が5回以上となるように、プロフィットファクター、ネットプロフィット、リカバリーファクターを最大化するといったものです。
preview
DoEasy - コントロール(第29部):ScrollBar補助コントロール

DoEasy - コントロール(第29部):ScrollBar補助コントロール

この記事では、ScrollBar補助コントロール要素とその派生オブジェクト(垂直および水平のスクロールバー)の開発を開始します。スクロールバーは、フォームのコンテンツがコンテナを超えた場合にスクロールするために使用されます。スクロールバーは通常フォームの下部と右側にあります。下部の水平のものはコンテンツを左右にスクロールし、垂直のものは上下にスクロールします。
preview
RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数

RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数

この記事では、MQL5がPythonやFastAPIとどのように相互作用できるか、MQL5のHTTP呼び出しを使用してPythonの三目並べゲームと相互作用する方法について説明します。この記事では、この統合のためのFastAPIを使用したAPIの作成について説明し、MQL5でのテストスクリプトを提供することで、MQL5の多用途性、Pythonのシンプルさ、そして革新的なソルーションを生み出すために異なるテクノロジーを接続するFastAPIの有効性を強調しています。
preview
DoEasy - コントロール(第3部):バインドされたコントロールの作成

DoEasy - コントロール(第3部):バインドされたコントロールの作成

本稿では、基本要素にバインドされた従属コントロールを作成します。開発は、基本的な制御機能を使用して実行されます。さらに、影を持つことができるオブジェクトに適用するとまだいくつかのロジックエラーが発生するため、グラフィック要素の影オブジェクトを少しいじります。
preview
DoEasy - サービス関数(第1回):価格パターン

DoEasy - サービス関数(第1回):価格パターン

この記事では、時系列データを使用して価格パターンを検索するメソッドの開発に着手します。パターンには、どのようなタイプのパターンにも共通する、一定のパラメータセットがあります。この種のデータはすべて、基となる抽象パターンのオブジェクトクラスに集約されます。今回は、抽象パターンクラスとピンバーパターンクラスを作成します。
preview
プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA

プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA

MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。
preview
古典的な戦略を再構築する(第9回):多時間枠分析(II)

古典的な戦略を再構築する(第9回):多時間枠分析(II)

本日のディスカッションでは、AIモデルがどの時間枠で最高のパフォーマンスを発揮するかを明らかにするため、多時間枠分析の戦略を検討します。この分析により、EURUSDペアにおいて月次および時間足の時間枠が比較的誤差の少ないモデルを生成することが分かりました。この結果を活用し、月次時間枠でAIによる予測を行い、時間枠で取引を実行するアルゴリズムを作成しました。
preview
初級から中級へ:演算子

初級から中級へ:演算子

この記事では、主な演算子 について学んでいきます。このトピックは理解しやすいかもしれませんが、コードフォーマットに数式を含める際には非常に重要なポイントがいくつかあります。これらの細部を十分に理解していないと、経験の浅いプログラマーは最終的に自分で解決策を見つけることをあきらめてしまうかもしれません。
preview
古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

本連載では、古典的な取引戦略を実証的に分析し、AIを用いてそれらの改善が可能かどうかを検証します。本日の議論では、線形判別分析モデルを用いて高値更新と安値更新の予測に挑戦します。
preview
プライスアクション分析ツールキットの開発(第3回):Analytics Master EA

プライスアクション分析ツールキットの開発(第3回):Analytics Master EA

シンプルな取引スクリプトから完全に機能するエキスパートアドバイザー(EA)に移行することで、取引エクスペリエンスが大幅に向上します。チャートを自動で監視し、バックグラウンドで重要な計算を実行し、さらに2時間ごとに定期的な更新を提供するシステムを想像してみてください。このEAは、的確な取引判断を下すために不可欠な主要指標を分析し、常に最新の情報を取得して戦略を効果的に調整できるようにします。