MQL5言語のプログラミング例に関する記事

icon

MQL5言語でMetaTraderプラットフォームのインジケータと自動売買ロボットを作成する方法を示すコード例を含む膨大な記事のコレクションにアクセスします。ソースコードは記事に添付されているので、MetaEditorで開いて実行して、アプリがどのように機能するかを確認できます。

これらの記事は自動取引初心者にも、プログラム経験があるプロのトレーダーにも役に立つでしょう。それらは単に例を特徴とするだけではなく、新しいアイデアも含んでいます。

新しい記事を追加
最新 | ベスト
preview
母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

機械学習モデルには、様々な調整可能なパラメータがあります。この連載では、SciPyライブラリを使用して、特定の市場に合うようにAIモデルをカスタマイズする方法を探ります。
preview
ブレインストーム最適化アルゴリズム(第1部):クラスタリング

ブレインストーム最適化アルゴリズム(第1部):クラスタリング

この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。
preview
MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

本日は、現在開発中の取引管理パネルのセキュリティ強化について説明します。Telegram APIを統合し、2要素認証(2FA)を実現する新しいセキュリティ戦略にMQL5を実装する方法を探ります。このディスカッションでは、MQL5を活用してセキュリティ対策を強化する方法について貴重な洞察を得ることができます。さらに、MathRand関数の機能に焦点を当て、セキュリティフレームワーク内でどのように効果的に活用できるかを検討します。さらに詳しく知りたい方は、読み続けてください。
preview
GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する

GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する

この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。
preview
Across Neighbourhood Search (ANS)

Across Neighbourhood Search (ANS)

この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第6回): Deep Double Descentの活用

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第6回): Deep Double Descentの活用

伝統的な機械学習では、モデルの過剰適合を防ぐことが実践者にとって重要であると教えられます。しかし、この考え方は、ハーバード大学の勤勉な研究者たちによって発表された新たな洞察によって見直されつつあります。彼らの研究によれば、一見すると過剰適合に見える現象が、場合によっては訓練プロセスを早期に終了した結果である可能性があることが示唆されています。本記事では、この研究論文で提案されたアイデアを活用し、市場リターン予測におけるAIの利用をどのように向上させられるかを解説します。
preview
DoEasy - コントロール(第3部):バインドされたコントロールの作成

DoEasy - コントロール(第3部):バインドされたコントロールの作成

本稿では、基本要素にバインドされた従属コントロールを作成します。開発は、基本的な制御機能を使用して実行されます。さらに、影を持つことができるオブジェクトに適用するとまだいくつかのロジックエラーが発生するため、グラフィック要素の影オブジェクトを少しいじります。
preview
DoEasy - コントロール(第29部):ScrollBar補助コントロール

DoEasy - コントロール(第29部):ScrollBar補助コントロール

この記事では、ScrollBar補助コントロール要素とその派生オブジェクト(垂直および水平のスクロールバー)の開発を開始します。スクロールバーは、フォームのコンテンツがコンテナを超えた場合にスクロールするために使用されます。スクロールバーは通常フォームの下部と右側にあります。下部の水平のものはコンテンツを左右にスクロールし、垂直のものは上下にスクロールします。
preview
複数の商品を同時に取引する際のリスクバランス

複数の商品を同時に取引する際のリスクバランス

この記事では、初心者が複数の商品を同時に取引する際のリスクバランスを取るためのスクリプトの実装をゼロから書けるようにします。また、経験豊富なユーザーは、この記事で提案されたオプションに関連して、ソリューションを実行するための新しいアイデアが得られるかもしれません。
preview
MQL5で古典的な戦略を再構築する(第3回):FTSE100予想

MQL5で古典的な戦略を再構築する(第3回):FTSE100予想

この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、FTSE100について調べ、指数を構成する個別銘柄の一部を使って指数の予測を試みます。
preview
GMDH (The Group Method of Data Handling):MQL5で組合せアルゴリズムを実装する

GMDH (The Group Method of Data Handling):MQL5で組合せアルゴリズムを実装する

この記事では、MQL5における組合せアルゴリズムと、その改良版である組合せ選択(Combinatorial Selective)アルゴリズムの実装について、データ処理のグループ法アルゴリズムファミリーの探求を続けます。
preview
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
preview
DoEasy-コントロール(第12部):基本リストオブジェクト、ListBoxおよびButtonListBox WinFormsオブジェクト

DoEasy-コントロール(第12部):基本リストオブジェクト、ListBoxおよびButtonListBox WinFormsオブジェクト

この記事では、WinFormsオブジェクトリストの基本オブジェクトと、2つの新しいオブジェクトを作成します。ListBoxとButtonListBoxです。
preview
DoEasy - サービス関数(第1回):価格パターン

DoEasy - サービス関数(第1回):価格パターン

この記事では、時系列データを使用して価格パターンを検索するメソッドの開発に着手します。パターンには、どのようなタイプのパターンにも共通する、一定のパラメータセットがあります。この種のデータはすべて、基となる抽象パターンのオブジェクトクラスに集約されます。今回は、抽象パターンクラスとピンバーパターンクラスを作成します。
preview
純粋なMQL5におけるエネルギーベースの学習を用いた特徴量選択アルゴリズム

純粋なMQL5におけるエネルギーベースの学習を用いた特徴量選択アルゴリズム

この記事では、「FREL:A stable feature selection algorithm」と題された学術論文に記載された、Feature Weighting as Regularized Energy-Based Learningと呼ばれる特徴量選択アルゴリズムの実装を紹介します。
preview
MQL5における動的時間伸縮を用いたパターン認識

MQL5における動的時間伸縮を用いたパターン認識

本稿では、金融時系列における予測パターンを特定する手段として、動的時間伸縮の概念について論じます。その仕組みと、純粋なMQL5での実装を紹介します。
preview
RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数

RestAPIを統合したMQL5強化学習エージェントの開発(第2回):三目並べゲームREST APIとのHTTPインタラクションのためのMQL5関数

この記事では、MQL5がPythonやFastAPIとどのように相互作用できるか、MQL5のHTTP呼び出しを使用してPythonの三目並べゲームと相互作用する方法について説明します。この記事では、この統合のためのFastAPIを使用したAPIの作成について説明し、MQL5でのテストスクリプトを提供することで、MQL5の多用途性、Pythonのシンプルさ、そして革新的なソルーションを生み出すために異なるテクノロジーを接続するFastAPIの有効性を強調しています。
preview
母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。
preview
リプレイシステムの開発(第38回):道を切り開く(II)

リプレイシステムの開発(第38回):道を切り開く(II)

MQL5プログラマーを自認する人の多くは、この記事で概説するような基本的な知識を持っていません。MQL5は多くの人によって限定的なツールだと考えてられていますが、実際の理由は、そのような人たちが必要な知識を持っていないということです。知らないことがあっても恥じることはありません。聞かなかったことを恥じるべきです。MetaTrader 5で指標の複製を強制的に無効にするだけでは、指標とEA間の双方向通信を確保することはできません。まだこれにはほど遠いものの、チャート上でこの指標が重複していないという事実は、私たちに自信を与えてくれます。
preview
リプレイシステムの開発(第35回):調整(I)

リプレイシステムの開発(第35回):調整(I)

前に進む前に、いくつかのことを解決する必要があります。これらは実際には必要な修正ではなく、クラスの管理方法や使用方法の改善です。その理由は、システム内の何らかの相互作用によって障害が発生したということです。このような失敗をなくすために原因を突き止めようと試みましたが、すべて失敗に終わりました。例えば、C/C++でポインタや再帰を使用すると、プログラムがクラッシュしてしまいます。
preview
リプレイシステムの開発(第37回):道を切り開く(I)

リプレイシステムの開発(第37回):道を切り開く(I)

今回は、もっと前にやりたかったことをようやく始めます。確固たる地盤がないため、この部分を公に発表する自信がありませんでした。今、私にはその根拠があります。この記事の内容を理解することにできるだけ集中することをお勧めします。単に読むだけではなくて、という意味です。ここで強調しておきたいのは、この記事を理解できなければ、それに続く記事の内容を理解することはできないということです。
DoEasyライブラリのグラフィックス(第96部): フォームオブジェクトのグラフィックとマウスイベントの処理
DoEasyライブラリのグラフィックス(第96部): フォームオブジェクトのグラフィックとマウスイベントの処理

DoEasyライブラリのグラフィックス(第96部): フォームオブジェクトのグラフィックとマウスイベントの処理

本稿では、フォームオブジェクトでマウスイベントを処理する機能の作成を開始し、銘柄オブジェクトに新しいプロパティとそのトラッキングを追加します。さらに、チャート銘柄で新しいプロパティが考慮/追加されて追跡されるため、銘柄オブジェクトクラスを改善します。
preview
リプレイシステムの開発(第57回):テストサービスについて

リプレイシステムの開発(第57回):テストサービスについて

注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
preview
初級から中級へ:演算子

初級から中級へ:演算子

この記事では、主な演算子 について学んでいきます。このトピックは理解しやすいかもしれませんが、コードフォーマットに数式を含める際には非常に重要なポイントがいくつかあります。これらの細部を十分に理解していないと、経験の浅いプログラマーは最終的に自分で解決策を見つけることをあきらめてしまうかもしれません。
preview
古典的な戦略を再構築する(第9回):多時間枠分析(II)

古典的な戦略を再構築する(第9回):多時間枠分析(II)

本日のディスカッションでは、AIモデルがどの時間枠で最高のパフォーマンスを発揮するかを明らかにするため、多時間枠分析の戦略を検討します。この分析により、EURUSDペアにおいて月次および時間足の時間枠が比較的誤差の少ないモデルを生成することが分かりました。この結果を活用し、月次時間枠でAIによる予測を行い、時間枠で取引を実行するアルゴリズムを作成しました。
preview
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(III)

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(III)

連載第3回へようこそ。今回は、日足のトレンドに沿った最適なエントリーポイントを特定する戦略として、ダイバージェンスの活用について詳しく解説します。また、トレーリングストップロスに似た、しかし独自の機能を備えたカスタム利益ロック機構もご紹介します。さらに、Trend Constraint EAを高度化し、既存の取引条件を補完する形で新たなエントリー条件を追加します。今後も、MQL5を活用したアルゴリズム開発の実践的な応用方法を深掘りし、実際に使えるテクニックや洞察を継続的にお届けしていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析

知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析

データ分析における次元削減技術である主成分分析について、固有値とベクトルを用いてどのように実装できるかを考察します。いつものように、MQL5ウィザードで使用可能なExpertSignalクラスのプロトタイプの開発を目指します。
preview
リプレイシステムの開発(第41回):第2段階(II)の開始

リプレイシステムの開発(第41回):第2段階(II)の開始

もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。
preview
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)

母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)

この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。
preview
制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

この記事では、MetaTrader 5端末の設定タブでCustom Maxを選択する際に、複数の目的と制約条件を持つ最適化問題を実装する方法を紹介します。最適化問題の例は、ドローダウンが10%未満、連敗回数が5回未満、1週間の取引回数が5回以上となるように、プロフィットファクター、ネットプロフィット、リカバリーファクターを最大化するといったものです。
preview
ニュース取引が簡単に(第2回):リスク管理

ニュース取引が簡単に(第2回):リスク管理

この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。
preview
DoEasy-コントロール(第10部):WinFormsオブジェクト - インターフェイスのアニメーション化

DoEasy-コントロール(第10部):WinFormsオブジェクト - インターフェイスのアニメーション化

ユーザーやオブジェクトとのオブジェクト対話機能を実装して、グラフィカルインターフェイスをアニメーション化するときが来ました。より複雑なオブジェクトを正しく動作させるためにも、新しい機能が必要になります。
preview
DoEasy-コントロール(第11部):WinFormsオブジェクト—グループ、CheckedListBox WinFormsオブジェクト

DoEasy-コントロール(第11部):WinFormsオブジェクト—グループ、CheckedListBox WinFormsオブジェクト

この記事では、WinFormsオブジェクトのグループ化と、CheckBoxオブジェクトリストオブジェクトの作成について検討します。
preview
MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

移動平均は、AIモデルが予測するのに最適な指標です。しかし、データを慎重に変換することで、さらなる精度向上が可能です。本記事では、現在の手法よりもさらに先の未来を、高い精度を維持しながら予測できるAIモデルの構築方法を解説します。移動平均がこれほど有用な指標であることには驚かされます。
preview
ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

新たな旅の始まりへようこそ。この記事は、MQL5言語で開発する方向けに、ログ操作のライブラリを段階的に作成するという特別な連載の最初の記事です。
preview
リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。
preview
古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測

本連載では、古典的な取引戦略を実証的に分析し、AIを用いてそれらの改善が可能かどうかを検証します。本日の議論では、線形判別分析モデルを用いて高値更新と安値更新の予測に挑戦します。
preview
MetaTraderのMultibot(第2回):動的テンプレートの改良

MetaTraderのMultibot(第2回):動的テンプレートの改良

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。