
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第4回):スタッキングモデル
本日は、自らの失敗から学習するAI搭載の取引アプリケーションの構築方法について解説します。特に、「スタッキング」と呼ばれる手法を紹介します。この手法では、2つのモデルを組み合わせて1つの予測をおこないます。1つ目のモデルは通常、性能が比較的低い学習者であり、2つ目のモデルはその学習者の残差を学習する、より高性能なモデルです。目標は、これらのモデルをアンサンブルとして統合することで、より高精度な予測を実現することです。

行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。

リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)
アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。

MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略
金融市場は一般的に、「レンジ相場」または「トレンド相場」のいずれかに分類されます。このような静的な市場の見方は、短期的な取引においては判断を容易にしてくれるかもしれません。しかし、実際の市場の動きとはかけ離れている側面もあります。この記事では、金融市場がこれら2つのモードをどのように移行するのかを探り、その理解を活かしてアルゴリズム取引戦略への自信をどのように高められるのかを考察します。

どんな市場でも優位性を得る方法(第3回):VISA消費指数
ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。

リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

取引履歴を気にせずにチャート上で直接取引を表示する方法
この記事では、キーナビゲーションを使用してチャート上でポジションと取引を直接便利に表示するためのシンプルなツールを作成します。トレーダーは個々の取引を視覚的に調べ、取引結果に関するすべての情報をその場で受け取ることができるようになります。

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)
このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。

古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場
この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日のディスカッションでは、貴金属と通貨の間に信頼できる関係があるかどうかを検証します。

PythonとMQL5による多銘柄分析(前編):NASDAQ集積回路メーカー
ポートフォリオのリターンを最大化するために、AIを活用してポジションサイジングと注文数量を最適化する方法について解説します。本稿では、アルゴリズムを用いて最適なポートフォリオを特定し、期待リターンやリスク許容度に応じてポートフォリオを調整する手法を紹介します。このプロセスでは、SciPyライブラリやMQL5言語を活用し、保有中のすべてのデータを基に、最適かつ分散化されたポートフォリオを構築します。

DoEasy - コントロール(第23部):TabControlおよびSplitContainer WinFormsオブジェクトの改善
今回は、WinFormsオブジェクトの作業領域の境界線に関連する新しいマウスイベントを追加し、TabControlとSplitContainerコントロールの機能に関するいくつかの欠点を修正することにします。

DoEasy-コントロール(第16部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、コンテナに合わせたヘッダーの伸び
この記事では、TabControlの開発を続け、ヘッダーのサイズを設定するすべてのモードに対して、コントロールの4つの側面すべてにタブヘッダーの配置(通常、固定、右詰め)を実装します。

DoEasy - コントロール(第22部):SplitContainer - 作成したオブジェクトのプロパティを変更する
今回は、新しく作成したSplitContainerコントロールのプロパティと外観を変更する機能を実装します。

コードロックアルゴリズム(CLA)
この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。

人工協調探索(ACS)アルゴリズム
人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。

リプレイシステムの開発(第33回):発注システム(II)
今日も発注システムの開発を続けます。ご覧のように、他の記事ですでに紹介したものを大量に再利用することになります。とはいえ、この記事にはささやかなご褒美があります。まず、デモ口座からでもリアル口座からでも、取引サーバーで使えるシステムを開発します。MetaTrader 5プラットフォームを幅広く活用し、当初から必要なサポートをすべて提供します。

リプレイシステムの開発(第34回):発注システム (III)
今回は、構築の第一段階を完成させます。この部分はかなり短時間で終わりますが、前回までに説明しなかった詳細をカバーします。多くの方が理解していない点をいくつか説明します。なぜShiftキーやCtrlキーを押さなければならないかご存じでしょうか。

母集団最適化アルゴリズム:ボイドアルゴリズム
この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。

MQL5で古典的な戦略を再構築する(後編):FTSE100と英国債
この連載では、人気のある取引戦略を探り、AIを使ってその改善を試みます。今日の記事では、株式市場と債券市場の関係に基づく古典的な取引戦略を再考します。

取引量による取引の洞察:OHLCチャートを超えて
取引量分析と機械学習技術、特にLSTMニューラルネットワークを組み合わせたアルゴリズム取引システムです。価格変動を中心に据えた従来の取引アプローチとは異なり、このシステムは市場の動きを予測するために取引量パターンとその導関数を重視します。この方法論には、取引量導関数分析(一次導関数および二次導関数)、取引量パターンのLSTM予測、および従来のテクニカル指標という3つの主要コンポーネントが組み込まれています。

リプレイシステムの開発(第40回):第2段階の開始(I)
今日は、リプレイ/シミュレーターシステムの新しい段階について話しましょう。この段階で、会話は本当に面白くなり、内容もかなり濃くなります。記事を熟読し、そこに掲載されているリンクを利用することを強くお勧めします。そうすることで、内容をより深く理解することができます。

古典的な戦略を再構築する(第7回):USDJPYにおける外国為替市場とソブリン債務分析
本日の記事では、今後の為替レートと国債の関係を分析します。債券は、最も人気のある固定利付証券の1つであり、今回の議論の焦点となります。AIを使用して従来の戦略を改善できるかどうかを一緒に検討しましょう。

古典的な戦略を再構築する(第6回):多時間枠分析
この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。

ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例
以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。

MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略
今日は私たちと一緒にUSDJPYペアを中心とした取引戦略の構築に挑戦するしましょう。日足のローソク足パターンは、潜在的により強い動きがあるため、日足パターンで形成されるローソク足パターンを取引します。私たちの当初の戦略は利益を生み、これにより獲得した資本を保護するために、戦略を継続的に改良し、安全性をさらに高める努力を続けることができました。

リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)
この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。

Developing a Replay System (Part 36): Making Adjustments (II)
One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.

リプレイシステムの開発(第39回):道を切り開く(III)
開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。

リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。

ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)
周波数領域における時系列の分析と予測を継続的に探求していきます。この記事では、これまでに学習した多くのアルゴリズムに追加できる、周波数領域でデータを予測する新しい方法について説明します。

MQL5で取引管理者パネルを作成する(第6回):取引管理パネル(II)
この記事では、多機能管理パネルの取引管理パネル(Trade Management Panel)を強化します。コードを簡素化し、読みやすさ、保守性、効率性を向上させる強力なヘルパー関数を導入します。また、追加のボタンをシームレスに統合し、インターフェイスを強化して、より幅広い取引タスクを処理する方法も紹介します。ポジションの管理、注文の調整、ユーザーとのやり取りの簡素化など、このガイドは、堅牢でユーザーフレンドリーな取引管理パネルの開発に役立ちます。

プライスアクション分析ツールキットの開発(第3回):Analytics Master EA
シンプルな取引スクリプトから完全に機能するエキスパートアドバイザー(EA)に移行することで、取引エクスペリエンスが大幅に向上します。チャートを自動で監視し、バックグラウンドで重要な計算を実行し、さらに2時間ごとに定期的な更新を提供するシステムを想像してみてください。このEAは、的確な取引判断を下すために不可欠な主要指標を分析し、常に最新の情報を取得して戦略を効果的に調整できるようにします。

彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。

プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。

MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)
取引管理者の役割はTelegram通信だけにとどまらず、注文管理、ポジション追跡、インターフェイスのカスタマイズなど、さまざまな制御アクティビティにも携わります。この記事では、MQL5の複数の機能をサポートするためにプログラムを拡張するための実用的な洞察を共有します。このアップデートは、主にコミュニケーションに重点を置くという現在のAdminパネルの制限を克服し、より幅広いタスクを処理できるようにすることを目的としています。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。