MQL5言語のプログラミング例に関する記事

icon

MQL5言語でMetaTraderプラットフォームのインジケータと自動売買ロボットを作成する方法を示すコード例を含む膨大な記事のコレクションにアクセスします。ソースコードは記事に添付されているので、MetaEditorで開いて実行して、アプリがどのように機能するかを確認できます。

これらの記事は自動取引初心者にも、プログラム経験があるプロのトレーダーにも役に立つでしょう。それらは単に例を特徴とするだけではなく、新しいアイデアも含んでいます。

新しい記事を追加
最新 | ベスト
preview
プライスアクション分析ツールキットの開発(第1回):チャートプロジェクター

プライスアクション分析ツールキットの開発(第1回):チャートプロジェクター

このプロジェクトは、MQL5アルゴリズムを活用して、MetaTrader 5向けの包括的な分析ツールセットを開発することを目的としています。これらのツールは、スクリプトやインジケーターからAIモデルやエキスパートアドバイザー(EA)に至るまで幅広く、市場分析プロセスの自動化を実現します。場合によっては、これらのツールによって、高度な分析を人間の介入なしで実行し、適切なプラットフォームに結果を予測することも可能になります。どのようなチャンスも逃しません。一緒に強力な市場分析用カスタムツールチェストを構築するプロセスを探求していきましょう。まず、「チャートプロジェクター」と名付けたシンプルなMQL5プログラムを開発することから始めます。
preview
初心者からエキスパートへ:サポートとレジスタンスの強度指標(SRSI)

初心者からエキスパートへ:サポートとレジスタンスの強度指標(SRSI)

本記事では、MQL5プログラミングを活用して市場の価格レベルを正確に特定し、弱いレベルと強いレベルを見分ける方法についての知見を共有します。さらに、実用的なサポートおよびレジスタンス強度インジケーター(SRSI)を完全に開発していきます。
母集団最適化アルゴリズム
母集団最適化アルゴリズム

母集団最適化アルゴリズム

最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。
preview
初心者のためのMQL5におけるファンダメンタル分析とテクニカル分析戦略の組み合わせ

初心者のためのMQL5におけるファンダメンタル分析とテクニカル分析戦略の組み合わせ

この記事では、トレンドフォローとファンダメンタル分析の原則を1つのエキスパートアドバイザー(EA)にシームレスに統合し、より強固な取引戦略を構築する方法について説明します。MQL5を活用して、誰でも簡単にカスタマイズされた取引アルゴリズムを作成できることを紹介します。
DoEasyライブラリのグラフィックス(第90部): 標準グラフィカルオブジェクトのイベント基本機能
DoEasyライブラリのグラフィックス(第90部): 標準グラフィカルオブジェクトのイベント基本機能

DoEasyライブラリのグラフィックス(第90部): 標準グラフィカルオブジェクトのイベント基本機能

本稿では、標準のグラフィカルオブジェクトイベントを追跡するための基本的な機能を実装します。グラフィカルオブジェクトのダブルクリックイベントから始めます。
preview
MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。
preview
プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

すべてのプライスアクショントレーダーは、トレンドを確認し、転換点や継続の可能性があるレベルを見つけるために、トレンドラインを手動で使用します。本連載では、市場分析を簡単にするために、傾斜トレンドラインを描画することに特化したツールを紹介します。このツールは、トレーダーが効果的なプライスアクション評価に不可欠な主要トレンドとレベルを明確に示すことで、分析プロセスを簡素化します。
preview
プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発

プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発

オブジェクト指向プログラミングのパラダイムとMQL5コードへの応用について学びます。この第2回目の記事では、オブジェクト指向プログラミングの具体的な内容をより深く掘り下げ、実践的な例を通して実体験を提供します。EMA指標とローソク足価格データを使用した、手続き型プライスアクションエキスパートアドバイザー(EA)をオブジェクト指向コードに変換する方法を学びます。
DoEasyライブラリのグラフィックス(第77部): 影オブジェクトクラス
DoEasyライブラリのグラフィックス(第77部): 影オブジェクトクラス

DoEasyライブラリのグラフィックス(第77部): 影オブジェクトクラス

本稿では、グラフィック要素オブジェクトの子孫である 影オブジェクトのクラスを作成し、オブジェクトの背景をグラデーションで塗りつぶす機能を追加します。
preview
リプレイシステムの開発(第52回):物事は複雑になる(IV)

リプレイシステムの開発(第52回):物事は複雑になる(IV)

この記事では、信頼性と安定性のある操作を確保するために、マウスポインタを変更してコントロール指標との対話を有効にします。
preview
リプレイシステムの開発(第58回):サービスへの復帰

リプレイシステムの開発(第58回):サービスへの復帰

リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
preview
リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)

リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)

バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。
preview
リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。
DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス
DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス

DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス

本稿では、前の記事のクラスのコードを最適化し、指定された数の頂点を持つ正多角形を描画するための幾何学的アニメーションフレームオブジェクトクラスを作成します。
preview
MetaTrader 5でのモンテカルロ並べ替え検定

MetaTrader 5でのモンテカルロ並べ替え検定

この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。
preview
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。
preview
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法

母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法

この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。
preview
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標

DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標

本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト

DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト

本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。
preview
MQL5での価格バーの並べ替え

MQL5での価格バーの並べ替え

この記事では、価格バーを並べ替えるアルゴリズムを紹介し、EAの潜在的な購入者を欺くためにストラテジーのパフォーマンスが捏造された事例を認識するために並べ替えテストをどのように使用できるかを詳述します。
preview
MQL5でJanus factorを実装する

MQL5でJanus factorを実装する

ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。
preview
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール
DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール

DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール

この記事では、水平スクロールバーオブジェクト機能の開発を完成します。また、スクロールバーのスライダーを動かしたり、マウスホイールを回転させたりしてコンテナの内容をスクロールできるようにするほか、MQL5の新しい注文実行ポリシーや新しいランタイムエラーコードを考慮したライブラリへの追加もおこないます。
preview
母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)

この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。
preview
MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合

MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合

この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。
preview
どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ

本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。
preview
MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装

この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。
preview
ビジュアルプログラミング言語DRAKON:MQL開発者と顧客のコミュニケーションツール

ビジュアルプログラミング言語DRAKON:MQL開発者と顧客のコミュニケーションツール

DRAKONは、ロシアの宇宙プロジェクト(例えば、「Buran」再利用可能宇宙船プロジェクト)のプログラマーと、異なる分野の専門家(生物学者、物理学者、エンジニアなど)との対話を簡素化するために設計されたビジュアルプログラミング言語です。この記事では、DRAKONが、コードに触れたことがない人にとっても、アルゴリズムの作成にアクセスしやすく、直感的にし、また、顧客が取引ロボットを注文する際に自分の考えを説明しやすくし、複雑な関数でプログラマーのミスを少なくする方法についてお話します。
preview
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。
preview
どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス

シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。
preview
初級から中級まで:配列と文字列(III)

初級から中級まで:配列と文字列(III)

この記事では2つの側面について考察します。まず、標準ライブラリを使ってバイナリ値を8進数、10進数、16進数などの表現に変換する方法について説明します。次に、これまでに習得した知識を活用して、秘密のフレーズに基づいてパスワードの桁数をどのように決定できるかについて解説します。
preview
DoEasy-コントロール(第15部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、タブ処理メソッド

DoEasy-コントロール(第15部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、タブ処理メソッド

この記事では、TabControl WinFormオブジェクトの作業を続けます。タブフィールドオブジェクトクラスを作成して複数の行にタブヘッダーを配置できるようにし、オブジェクトタブを処理するメソッドを追加します。
preview
母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

移動平均は、AIモデルが予測するのに最適な指標です。しかし、データを慎重に変換することで、さらなる精度向上が可能です。本記事では、現在の手法よりもさらに先の未来を、高い精度を維持しながら予測できるAIモデルの構築方法を解説します。移動平均がこれほど有用な指標であることには驚かされます。
DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム

DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム

本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。
preview
母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
preview
母集団最適化アルゴリズム:魚群検索(FSS)

母集団最適化アルゴリズム:魚群検索(FSS)

魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。
preview
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。