MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略
金融市場は一般的に、「レンジ相場」または「トレンド相場」のいずれかに分類されます。このような静的な市場の見方は、短期的な取引においては判断を容易にしてくれるかもしれません。しかし、実際の市場の動きとはかけ離れている側面もあります。この記事では、金融市場がこれら2つのモードをどのように移行するのかを探り、その理解を活かしてアルゴリズム取引戦略への自信をどのように高められるのかを考察します。
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。
Connexus入門(第1回):WebRequest関数の使い方
この記事は、MQL5でHTTPリクエストを容易にするための「Connexus」と呼ばれるライブラリの開発シリーズの始まりです。このプロジェクトの目標は、エンドユーザーにこの機会を提供し、このヘルパーライブラリーの使い方を示すことです。学習を容易にし、将来の発展の可能性を提供するために、できるだけシンプルにすることを意図しました。
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
MetaTrader 5でのモンテカルロ並べ替え検定
この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。
リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)
バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。
プライスアクション分析ツールキットの開発(第1回):チャートプロジェクター
このプロジェクトは、MQL5アルゴリズムを活用して、MetaTrader 5向けの包括的な分析ツールセットを開発することを目的としています。これらのツールは、スクリプトやインジケーターからAIモデルやエキスパートアドバイザー(EA)に至るまで幅広く、市場分析プロセスの自動化を実現します。場合によっては、これらのツールによって、高度な分析を人間の介入なしで実行し、適切なプラットフォームに結果を予測することも可能になります。どのようなチャンスも逃しません。一緒に強力な市場分析用カスタムツールチェストを構築するプロセスを探求していきましょう。まず、「チャートプロジェクター」と名付けたシンプルなMQL5プログラムを開発することから始めます。
プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発
オブジェクト指向プログラミングのパラダイムとMQL5コードへの応用について学びます。この第2回目の記事では、オブジェクト指向プログラミングの具体的な内容をより深く掘り下げ、実践的な例を通して実体験を提供します。EMA指標とローソク足価格データを使用した、手続き型プライスアクションエキスパートアドバイザー(EA)をオブジェクト指向コードに変換する方法を学びます。
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(III)
連載第3回へようこそ。今回は、日足のトレンドに沿った最適なエントリーポイントを特定する戦略として、ダイバージェンスの活用について詳しく解説します。また、トレーリングストップロスに似た、しかし独自の機能を備えたカスタム利益ロック機構もご紹介します。さらに、Trend Constraint EAを高度化し、既存の取引条件を補完する形で新たなエントリー条件を追加します。今後も、MQL5を活用したアルゴリズム開発の実践的な応用方法を深掘りし、実際に使えるテクニックや洞察を継続的にお届けしていきます。

DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。

DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール
この記事では、水平スクロールバーオブジェクト機能の開発を完成します。また、スクロールバーのスライダーを動かしたり、マウスホイールを回転させたりしてコンテナの内容をスクロールできるようにするほか、MQL5の新しい注文実行ポリシーや新しいランタイムエラーコードを考慮したライブラリへの追加もおこないます。

母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。

PythonとMQL5を使用した取引戦略の自動パラメータ最適化
取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。

DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。

ビジュアルプログラミング言語DRAKON:MQL開発者と顧客のコミュニケーションツール
DRAKONは、ロシアの宇宙プロジェクト(例えば、「Buran」再利用可能宇宙船プロジェクト)のプログラマーと、異なる分野の専門家(生物学者、物理学者、エンジニアなど)との対話を簡素化するために設計されたビジュアルプログラミング言語です。この記事では、DRAKONが、コードに触れたことがない人にとっても、アルゴリズムの作成にアクセスしやすく、直感的にし、また、顧客が取引ロボットを注文する際に自分の考えを説明しやすくし、複雑な関数でプログラマーのミスを少なくする方法についてお話します。

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ
本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。

DoEasy-コントロール(第24部):ヒント補助WinFormsオブジェクト
今回は、すべてのWinFormsライブラリオブジェクトの基本オブジェクトとメインオブジェクトを指定するロジックを見直し、新しいヒント基本オブジェクトとその派生クラスのいくつかを開発して、区切りの移動可能な方向を示すことにします。

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)
前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。

母集団最適化アルゴリズム:魚群検索(FSS)
魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。

DoEasy - コントロール(第5部):WinForms基本オブジェクト、Panelコントロール、AutoSizeパラメータ
本稿では、すべてのライブラリWinFormsオブジェクトの基本オブジェクトを作成し、Panel WinFormsオブジェクトのAutoSizeプロパティ(オブジェクトの内部コンテンツに合わせた自動サイズ変更)の実装を開始する予定です。

DoEasy - コントロール(第26部):ToolTip WinFormsオブジェクトの最終確認とProgressBarの開発開始
今回は、ツールチップコントロールの開発を完了し、ProgressBar WinFormsオブジェクトの開発を開始します。オブジェクトで作業しながら、コントロールやそのコンポーネントをアニメーション化するための普遍的な機能を開発する予定です。

Pythonを使ったEAとバックテストのための感情分析とディープラーニング
この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。

時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。

リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する
ここでは、リプレイシステムで、調整されているかどうかを気にすることなく、より信頼性の高いデータ(取引されたティック)を使用する方法を見ていきます。

DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス
この記事では、ライブラリの一部で使用されるアニメーションの原則を定義します。また、画像の一部をコピーして指定したフォームオブジェクトの場所に貼り付け、画像が重ねられるフォームの背景の一部を保存して復元するクラスを開発します。

DoEasy-コントロール(第15部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、タブ処理メソッド
この記事では、TabControl WinFormオブジェクトの作業を続けます。タブフィールドオブジェクトクラスを作成して複数の行にタブヘッダーを配置できるようにし、オブジェクトタブを処理するメソッドを追加します。

DoEasyライブラリのグラフィックス(第94部): 複合グラフィカルオブジェクトの移動と削除
本稿では、さまざまな複合グラフィカルオブジェクトイベントの開発を開始します。また、複合グラフィカルオブジェクトの移動と削除についても部分的に検討します。実際、ここでは、前の記事で実装したものを微調整します。

知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引
ウィザードを介してEAが組み立てられた場合、デフォルトでは複数の通貨をまたいだ取引は利用できません。トレーダーが一度に複数の銘柄から自分のアイデアをテストする際に、2つの可能なトリックを検討します。

DoEasy - コントロール(第4部):パネルコントロールとPadding and Dockパラメータ
今回は、Paddingパラメータ(要素の四辺の内部インデント/マージン)とDockパラメータ(コンテナ内のオブジェクトの配置方法)の扱いを実装します。