MQL4とMQL5のプログラム記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
preview
オブジェクトを使用して複雑な指標を簡単に

オブジェクトを使用して複雑な指標を簡単に

この記事では、複数のプロットやバッファを扱ったり複数のソースからのデータを組み合わせたりするときに発生する問題を回避しながら、複雑な指標を作成する方法を紹介します。
preview
母集団最適化アルゴリズム:ハーモニーサーチ(HS)

母集団最適化アルゴリズム:ハーモニーサーチ(HS)

今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
preview
ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

デザインパターンには、生成デザインパターン、構造デザインパターン、振る舞いデザインパターンの3タイプがあることを説明しました。コードをクリーンにしながらオブジェクト間の相互作用の方法を設定するのに役立つ、残りの振る舞いタイプのパターンの説明を完成させます。
preview
一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。
preview
独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
MQL5でONNXモデルをアンサンブルする方法の例

MQL5でONNXモデルをアンサンブルする方法の例

ONNX (Open Neural Network eXchange)は、ニューラルネットワークを表現するために構築されたオープンフォーマットです。この記事では、1つのエキスパートアドバイザー(EA)で2つのONNXモデルを同時に使用する方法を示します。
preview
MQL5の圏論(第15回):関手とグラフ

MQL5の圏論(第15回):関手とグラフ

この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
preview
一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。
preview
時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
知っておくべきMQL5ウィザードのテクニック(第07回):樹状図

知っておくべきMQL5ウィザードのテクニック(第07回):樹状図

分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
preview
Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

この記事では、RSIと移動平均指標に基づいて自動売買をおこなうDeus EAの実装手順を概説します。
preview
PatchTST機械学習アルゴリズムによる24時間の値動きの予測

PatchTST機械学習アルゴリズムによる24時間の値動きの予測

この記事では、PatchTSTと呼ばれる2023年にリリースされた比較的複雑なニューラルネットワークアルゴリズムを適用し、今後24時間の値動きを予測します。公式リポジトリを使用し、若干の修正を加え、EURUSDのモデルを訓練し、PythonとMQL5の両方で将来の予測をおこなうために適用します。
preview
DoEasyライブラリの時系列(第51部): 複数銘柄・複数期間の複合標準指標

DoEasyライブラリの時系列(第51部): 複数銘柄・複数期間の複合標準指標

本稿では、 複数銘柄・複数期間標準指標のオブジェクトの開発を完結します。一目均衡表標準指標の例を使用して、チャートにデータを表示するための補助描画バッファを持つ複合カスタム指標の作成を分析します。
DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能
DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能

DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能

現在、ライブラリでは、一部のパラメータの削除や変更など、クライアントターミナルのチャート上の標準のグラフィカルオブジェクトを追跡できます。現時点では、カスタムプログラムから標準グラフィカルオブジェクトを作成する機能はありません。
preview
Rebuyのアルゴリズム:多通貨取引シミュレーション

Rebuyのアルゴリズム:多通貨取引シミュレーション

本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
preview
GUI:MQLで独自のグラフィックライブラリを作成するためのヒントとコツ

GUI:MQLで独自のグラフィックライブラリを作成するためのヒントとコツ

GUIライブラリの基本的な使い方を説明し、GUIライブラリがどのように機能するのかを理解し、さらには自分自身のライブラリを作り始めることができるようにします。
preview
ティッカーテープパネルの作成:改良版

ティッカーテープパネルの作成:改良版

ティッカーテープパネルの基本バージョンを復活させるというアイデアはいかがでしょうか。まずおこなうのは、資産のロゴやその他の画像などの画像を追加できるようにパネルを変更して、ユーザーが表示された銘柄をすばやく簡単に識別できるようにすることです。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。
preview
DoEasyライブラリの時系列(第50部): シフト付き複数銘柄・複数期間標準指標

DoEasyライブラリの時系列(第50部): シフト付き複数銘柄・複数期間標準指標

本稿では、複数銘柄・複数期間標準指標を正しく表示するためのライブラリメソッドを改善して、設定されたシフトによってシフトされたラインが現在の銘柄チャートに表示されるようにします。また、標準指標を使用するメソッドを整理し、最終的な指標プログラムのライブラリにある冗長なコードを削除します。
preview
DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作

DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作

この記事では、ProgressBarコントロールの開発を続けます。特に、プログレスバーと視覚効果を管理するための機能を作成します。
preview
一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)

一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)

チャート上直接の発注システムをより完全にしましょう。この記事では、発注システムを修正する方法、またはより直感的にする方法を示します。
preview
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
preview
ニューラルネットワークが簡単に(第47回):連続行動空間

ニューラルネットワークが簡単に(第47回):連続行動空間

この記事では、エージェントのタスクの範囲を拡大します。訓練の過程には、どのような取引戦略にも不可欠な資金管理とリスク管理の側面も含まれます。
preview
日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。
preview
MQL5の圏論(第11回):グラフ

MQL5の圏論(第11回):グラフ

この記事は、MQL5での圏論の実装を考察する連載の続きです。ここでは、取引システムへのクローズアウト戦略を開発する際に、グラフ理論をモノイドやその他のデータ構造とどのように統合できるかを検討します。
preview
自動で動くEAを作る(第13回):自動化(V)

自動で動くEAを作る(第13回):自動化(V)

フローチャートとは何かご存じでしょうか。使い方はご存じですか。フローチャートは初心者向けだとお考えでしょうか。この新しい記事では、フローチャートの操作方法を説明します。
preview
取引における道徳的期待値

取引における道徳的期待値

この記事は、道徳的期待値についてです。取引でのその使用のいくつかの例と、その助けを借りて達成できる結果を見ていきます。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読

本連載では、動的な市場状況に自律的に適応できるエキスパートアドバイザー(EA)を構築する方法について説明します。本日の記事では、Derivの合成市場に合わせてディープニューラルネットワークを調整してみます。
preview
ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

前回の記事では、非勾配最適化手法の調査を開始しました。遺伝的アルゴリズムについて学びました。今日は、このトピックを継続し、進化的アルゴリズムの別のクラスを検討します。
preview
DoEasy - コントロール(第7部):テキストラベルコントロール

DoEasy - コントロール(第7部):テキストラベルコントロール

今回の記事では、WinFormsテキストラベルコントロールオブジェクトのクラスを作成します。このようなオブジェクトはコンテナをどこにでも配置できますが、独自の機能はMS Visual Studioテキストラベルの機能を繰り返します。表示されるテキストのフォントパラメータは設定できます。
preview
ニューラルネットワークが簡単に(第20部):オートエンコーダ

ニューラルネットワークが簡単に(第20部):オートエンコーダ

教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。
preview
多銘柄多期間指標におけるカラーバッファ

多銘柄多期間指標におけるカラーバッファ

この記事では、多銘柄多期間指標における指標バッファの構造体を確認し、これらの指標のカラーバッファのチャート上での表示を整理します。
preview
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
初心者からエキスパートへ:MQL5での共同デバッグ

初心者からエキスパートへ:MQL5での共同デバッグ

問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。
preview
一からの取引エキスパートアドバイザーの開発(第12部):Times and Trade (I)

一からの取引エキスパートアドバイザーの開発(第12部):Times and Trade (I)

今日は、注文の流れを読むために、高速な解釈を持つTimes & Tradeを作成します。これは、システムを構築していくうえで最初の部分です。次回は、足りない情報を補って、システムを完成させる予定です。この新しい機能を実装するために、エキスパートアドバイザー(EA)のコードにいくつかの新しいものを追加する必要があります。
preview
デマーカーによる取引システムの設計方法を学ぶ

デマーカーによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、デマーカー(DeMarker)指標による取引システムの作り方を紹介します。
preview
MQL5クックブック - マクロ経済イベントデータベース

MQL5クックブック - マクロ経済イベントデータベース

この記事では、SQLiteエンジンに基づいてデータベースを処理する可能性について説明します。CDatabaseクラスは、OOP原則を便利かつ効率的に使用するために作成されました。その後、マクロ経済イベントのデータベースの作成と管理に関与しています。この記事では、CDatabaseクラスの複数のメソッドを使用する例を示します。
preview
ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

この記事では、ビル・ウィリアムズの有名な戦略の1つを取り上げ、それについて議論し、他の指標や予測を用いて戦略の改善を試みます。
preview
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト

時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。